Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1863(11): 129405, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31376411

RESUMO

BACKGROUND: Nucleoid associated proteins (NAPs) are essential for chromosome condensation in bacterial cells. Despite being a diverse group, NAPs share two common traits: they are small, oligomeric proteins and their oligomeric state is critical for DNA condensation. Streptomyces coelicolor IHF (sIHF) is an actinobacterial-specific nucleoid-associated protein that despite its name, shares neither sequence nor structural homology with the well-characterized Escherichia coli IHF. Like E. coli IHF, sIHF is needed for efficient nucleoid condensation, morphological development and antibiotic production in S. coelicolor. METHODS: Using a combination of crystallography, small-angle X-ray scattering, electron microscopy and structure-guided functional assays, we characterized how sIHF binds and remodels DNA. RESULTS: The structure of sIHF bound to DNA revealed two DNA-binding elements on opposite surfaces of the helix bundle. Using structure-guided functional assays, we identified an additional surface that drives DNA binding in solution. Binding by each element is necessary for both normal development and antibiotic production in vivo, while in vitro, they act collectively to restrain negative supercoils. CONCLUSIONS: The cleft defined by the N-terminal and the helix bundle of sIHF drives DNA binding, but the two additional surfaces identified on the crystal structure are necessary to stabilize binding, remodel DNA and maintain wild-type levels of antibiotic production. We propose a model describing how the multiple DNA-binding elements enable oligomerization-independent nucleoid condensation. GENERAL SIGNIFICANCE: This work provides a new dimension to the mechanistic repertoire ascribed to bacterial NAPs and highlights the power of combining structural biology techniques to study sequence unspecific protein-DNA interactions.


Assuntos
DNA Bacteriano/química , Fatores Hospedeiros de Integração/química , Streptomyces coelicolor/química , Sítios de Ligação , Cristalografia por Raios X , Conformação Proteica em alfa-Hélice
2.
Elife ; 82019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31215866

RESUMO

Lsr2 is a nucleoid-associated protein conserved throughout the actinobacteria, including the antibiotic-producing Streptomyces. Streptomyces species encode paralogous Lsr2 proteins (Lsr2 and Lsr2-like, or LsrL), and we show here that of the two, Lsr2 has greater functional significance. We found that Lsr2 binds AT-rich sequences throughout the chromosome, and broadly represses gene expression. Strikingly, specialized metabolic clusters were over-represented amongst its targets, and the cryptic nature of many of these clusters appears to stem from Lsr2-mediated repression. Manipulating Lsr2 activity in model species and uncharacterized isolates resulted in the production of new metabolites not seen in wild type strains. Our results suggest that the transcriptional silencing of biosynthetic clusters by Lsr2 may protect Streptomyces from the inappropriate expression of specialized metabolites, and provide global control over Streptomyces' arsenal of signaling and antagonistic compounds.


Assuntos
Proteínas de Bactérias/metabolismo , Núcleo Celular/metabolismo , Streptomyces/metabolismo , Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Sítios de Ligação , Vias Biossintéticas/genética , Cromossomos Bacterianos/genética , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal/genética , Genes Bacterianos , Metaboloma/genética , Mutação/genética , Fenótipo , Streptomyces/genética , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA