Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1733, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409212

RESUMO

Glutaredoxins catalyze the reduction of disulfides and are key players in redox metabolism and regulation. While important insights were gained regarding the reduction of glutathione disulfide substrates, the mechanism of non-glutathione disulfide reduction remains highly debated. Here we determined the rate constants for the individual redox reactions between PfGrx, a model glutaredoxin from Plasmodium falciparum, and redox-sensitive green fluorescent protein 2 (roGFP2), a model substrate and versatile tool for intracellular redox measurements. We show that the PfGrx-catalyzed oxidation of roGFP2 occurs via a monothiol mechanism and is up to three orders of magnitude faster when roGFP2 and PfGrx are fused. The oxidation kinetics of roGFP2-PfGrx fusion constructs reflect at physiological GSSG concentrations the glutathionylation kinetics of the glutaredoxin moiety, thus allowing intracellular structure-function analysis. Reduction of the roGFP2 disulfide occurs via a monothiol mechanism and involves a ternary complex with GSH and PfGrx. Our study provides the mechanistic basis for understanding roGFP2 redox sensing and challenges previous mechanisms for protein disulfide reduction.


Assuntos
Glutarredoxinas , Glutationa , Proteínas de Fluorescência Verde/metabolismo , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Oxirredução , Dissulfetos/metabolismo , Catálise , Dissulfeto de Glutationa/metabolismo
2.
Free Radic Biol Med ; 172: 340-349, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34146665

RESUMO

The thioredoxin fold superfamily is highly diverse and contains many enzymatically active glutathione-dependent thiol-disulfide oxidoreductases, for example glutaredoxins and protein disulfide isomerases. However, many thioredoxin fold proteins remain completely uncharacterized, their cellular function is unknown, and it is unclear if they have a redox-dependent enzymatic activity with glutathione or not. Investigation of enzymatic activity traditionally involved time-consuming in vitro characterization of recombinant proteins, limiting the capacity to study novel mechanisms and structure-function relationships. To accelerate our investigation of glutathione-dependent oxidoreductases, we have developed a high-throughput and semi-quantitative assay in yeast. We combined overexpression of the glutathione transporter OPT1 with genetic fusion constructs between glutathione-dependent oxidoreductases and redox-sensitive green fluorescent protein 2 (roGFP2) to allow the rapid characterization of enzymatic activity with physiological substrates. We show that the kinetics of roGFP2 oxidation by glutathione disulfide correlate well with the in vitro-determined activity of the genetically fused glutaredoxins or mutants thereof. Our assay thus allows direct screening of glutaredoxin activity and rapid investigation of structure-function relationships. We also demonstrate that our assay can be used to monitor roGFP2 oxidation by S-nitrosoglutathione (GSNO). We show that glutaredoxins efficiently catalyze oxidation of roGFP2 by GSNO in both live yeast cells and in vitro. In summary, we have established a novel assay for activity screening and characterization of glutathione-dependent oxidoreductases.


Assuntos
Glutarredoxinas , Glutationa , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa , Glutationa Redutase , Oxirredução
3.
Nat Commun ; 11(1): 1725, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265442

RESUMO

Class I glutaredoxins are enzymatically active, glutathione-dependent oxidoreductases, whilst class II glutaredoxins are typically enzymatically inactive, Fe-S cluster-binding proteins. Enzymatically active glutaredoxins harbor both a glutathione-scaffold site for reacting with glutathionylated disulfide substrates and a glutathione-activator site for reacting with reduced glutathione. Here, using yeast ScGrx7 as a model protein, we comprehensively identified and characterized key residues from four distinct protein regions, as well as the covalently bound glutathione moiety, and quantified their contribution to both interaction sites. Additionally, we developed a redox-sensitive GFP2-based assay, which allowed the real-time assessment of glutaredoxin structure-function relationships inside living cells. Finally, we employed this assay to rapidly screen multiple glutaredoxin mutants, ultimately enabling us to convert enzymatically active and inactive glutaredoxins into each other. In summary, we have gained a comprehensive understanding of the mechanistic underpinnings of glutaredoxin catalysis and have elucidated the determinant structural differences between the two main classes of glutaredoxins.


Assuntos
Glutarredoxinas/química , Glutationa/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos/genética , Catálise , Domínio Catalítico/genética , Dissulfetos/química , Ativação Enzimática , Ensaios Enzimáticos , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/química , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Oxirredução , Conformação Proteica em alfa-Hélice , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Protein Sci ; 28(1): 100-110, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30056630

RESUMO

Peroxiredoxins efficiently remove hydroperoxides and peroxynitrite in pro- and eukaryotes. However, isoforms of one subfamily of peroxiredoxins, the so-called Prx6-type enzymes, usually have very low activities in standard peroxidase assays in vitro. In contrast to other peroxiredoxins, Prx6 homologues share a conserved histidyl residue at the bottom of the active site. Here we addressed the role of this histidyl residue for redox catalysis using the Plasmodium falciparum homologue PfPrx6 as a model enzyme. Steady-state kinetics with tert-butyl hydroperoxide (tBuOOH) revealed that the histidyl residue is nonessential for Prx6 catalysis and that a replacement with tyrosine can even increase the enzyme activity four- to six-fold in vitro. Stopped-flow kinetics with reduced PfPrx6WT , PfPrx6C128A , and PfPrx6H39Y revealed a preference for H2 O2 as an oxidant with second order rate constants for H2 O2 and tBuOOH around 2.5 × 107 M-1 s-1 and 3 × 106 M-1 s-1 , respectively. Differences between the oxidation kinetics of PfPrx6WT , PfPrx6C128A , and PfPrx6H39Y were observed during a slower second-reaction phase. Our kinetic data support the interpretation that the reductive half-reaction is the rate-limiting step for PfPrx6 catalysis in steady-state measurements. Whether the increased activity of PfPrx6H39Y is caused by a facilitated enzyme reduction because of a destabilization of the fully folded enzyme conformation remains to be analyzed. In summary, the conserved histidyl residue of Prx6-type enzymes is non-essential for catalysis, PfPrx6 is rapidly oxidized by hydroperoxides, and the gain-of-function mutant PfPrx6H39Y might provide a valuable tool to address the influence of conformational changes on the reactivity of Prx6 homologues.


Assuntos
Substituição de Aminoácidos , Histidina/química , Peroxirredoxina VI/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Tirosina/química , Domínio Catalítico , Ativação Enzimática/genética , Mutação com Ganho de Função , Histidina/genética , Peróxido de Hidrogênio/química , Cinética , Oxirredução , Peroxirredoxina VI/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Tirosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA