Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Chem Rev ; 122(24): 17339-17396, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36278801

RESUMO

Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.


Assuntos
Lasers , Luz , Análise Espectral/métodos
2.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38656440

RESUMO

The dynamics of the sub-Ohmic spin-boson model under polarized initial conditions at finite temperatures is investigated by employing both analytical tools and the numerically accurate hierarchical equations of motion-tensor train method. By analyzing the features of nonequilibrium dynamics, we discovered a bifurcation phenomenon, which separates two regimes of the dynamics. It is found that before the bifurcation time, increasing temperature slows down the population dynamics, while the opposite effect occurs after the bifurcation time. The dynamics is highly sensitive to both initial preparation of the bath and thermal effects.

3.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38421073

RESUMO

By employing the numerically accurate multiple Davydov Ansatz (mDA) formalism in combination with the thermo-field dynamics (TFD) representation of quantum mechanics, we systematically explore the influence of three parameters-temperature, photonic-mode detuning, and qubit-phonon coupling-on population dynamics and absorption spectra of the Holstein-Tavis-Cummings (HTC) model. It is found that elevated qubit-phonon couplings and/or temperatures have a similar impact on all dynamic observables: they suppress the amplitudes of Rabi oscillations in photonic populations as well as broaden the peaks and decrease their intensities in the absorption spectra. Our results unequivocally demonstrate that the HTC dynamics is very sensitive to the concerted variation of the three aforementioned parameters, and this finding can be used for fine-tuning polaritonic transport. The developed mDA-TFD methodology can be efficiently applied for modeling, predicting, optimizing, and comprehensively understanding dynamic and spectroscopic responses of actual molecular systems in microcavities.

4.
J Chem Phys ; 160(10)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38477337

RESUMO

We combine on-the-fly trajectory surface hopping simulations and the doorway-window representation of nonlinear optical response functions to create an efficient protocol for the evaluation of time- and frequency-resolved fluorescence (TFRF) spectra and anisotropies of the realistic polyatomic systems. This approach gives the effective description of the proper (e.g., experimental) pulse envelopes, laser field polarizations, and the proper orientational averaging of TFRF signals directly from the well-established on-the-fly nonadiabatic dynamic simulations without extra computational cost. To discuss the implementation details of the developed protocol, we chose cis-azobenzene as a prototype to simulate the time evolution of the TFRF spectra governed by its nonadiabatic dynamics. The results show that the TFRF is determined by the interplay of several key factors, i.e., decays of excited-state populations, evolution of the transition dipole moments along with the dynamic propagation, and scaling factor of the TFRF signals associated with the cube of emission frequency. This work not only provides an efficient and effective approach to simulate the TFRF and anisotropies of realistic polyatomic systems but also discusses the important relationship between the TFRF signals and the underlining nonadiabatic dynamics.

5.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341700

RESUMO

This study leverages two-pulse femtosecond stimulated Raman spectroscopy (2FSRS) to characterize molecular systems with avoided crossings (ACs) and conical intersections (CIs) in their low-lying excited electronic states. By simulating 2FSRS spectra of microscopically inspired ACs and CIs models, we demonstrate that 2FSRS not only delivers valuable information on the molecular parameters characterizing ACs and CIs but also helps distinguish between these two systems.

6.
J Chem Phys ; 159(7)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37581414

RESUMO

We propose a novel UV/Vis femtosecond spectroscopic technique, two-dimensional fluorescence-excitation (2D-FLEX) spectroscopy, which combines spectral resolution during the excitation process with exclusive monitoring of the excited-state system dynamics at high time and frequency resolution. We discuss the experimental feasibility and realizability of 2D-FLEX, develop the necessary theoretical framework, and demonstrate the high information content of this technique by simulating the 2D-FLEX spectra of a model four-level system and the Fenna-Matthews-Olson antenna complex. We show that the evolution of 2D-FLEX spectra with population time directly monitors energy transfer dynamics and can thus yield direct qualitative insight into the investigated system. This makes 2D-FLEX a highly efficient instrument for real-time monitoring of photophysical processes in polyatomic molecules and molecular aggregates.

7.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38088431

RESUMO

We formulate a contraction theorem that maps quantum dynamics of a multilevel degenerate system (DS) driven by a time-dependent external field to the dynamics of the corresponding contracted non-degenerate system (CNS) of lower dimension, provided transitions between each pair of degenerate levels in the DS have identical transition dipole moments. The theorem is valid for an external field of any strength and shape, with and without rotating wave approximation in the system-field interaction. It establishes explicit relations between DS and CNS observables, significantly simplifies numerical calculations, and clarifies physical origins of the field-induced DS dynamics.

8.
J Chem Phys ; 158(19)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37191214

RESUMO

By employing the doorway-window (DW) on-the-fly simulation protocol, we performed ab initio simulations of peak evolutions and beating maps of electronic two-dimensional (2D) spectra of a polyatomic molecule in the gas phase. As the system under study, we chose pyrazine, which is a paradigmatic example of photodynamics dominated by conical intersections (CIs). From the technical perspective, we demonstrate that the DW protocol is a numerically efficient methodology suitable for simulations of 2D spectra for a wide range of excitation/detection frequencies and population times. From the information content perspective, we show that peak evolutions and beating maps not only reveal timescales of transitions through CIs but also pinpoint the most relevant coupling and tuning modes active at these CIs.

9.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37226995

RESUMO

We investigate the dynamics of Landau-Zener (LZ) transitions in an anisotropic, dissipative three-level LZ model (3-LZM) using the numerically accurate multiple Davydov D2Ansatz in the framework of the time-dependent variational principle. It is demonstrated that a non-monotonic relationship exists between the Landau-Zener transition probability and the phonon coupling strength when the 3-LZM is driven by a linear external field. Under the influence of a periodic driving field, phonon coupling may induce peaks in contour plots of the transition probability when the magnitude of the system anisotropy matches the phonon frequency. The 3-LZM coupled to a super-Ohmic phonon bath and driven by a periodic external field exhibits periodic population dynamics in which the period and amplitude of the oscillations decrease with the bath coupling strength.

10.
J Chem Phys ; 158(10): 104109, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36922121

RESUMO

The dynamics of the (sub-)Ohmic spin-boson model under various bath initial conditions is investigated by employing the Dirac-Frenkel time-dependent variational approach with the multiple Davydov D1 Ansatz in the interaction picture. The validity of our approach is carefully checked by comparing the results with those of the hierarchy equations of motion method. By analyzing the features of nonequilibrium dynamics, we identify the phase diagrams for different bath initial conditions. We find that for the spectral exponent s < sc, there exists a transition from coherent to quasicoherent dynamics with increasing coupling strengths. For sc < s ≤ 1, the coherent to incoherent crossover occurs at a certain coupling strength and the quasicoherent dynamics emerges at much larger couplings. The initial preparation of the bath has a considerable influence on the dynamics.

11.
J Chem Phys ; 156(2): 024102, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35032972

RESUMO

By employing the time-dependent variational principle and the versatile multi-D2 Davydov trial states, in combination with the Green's function method, we study the dynamics of the Tavis-Cummings model and the Holstein-Tavis-Cummings model in the presence of diagonal disorder and cavity-qubit coupling disorder. For the Tavis-Cummings model, time evolution of the photon population, the optical absorption spectra, and the hetero-entanglement between the qubits and the cavity mode are calculated by using the Green's function method to corroborate numerically exact results of Davydov's Ansätze. For the Holstein-Tavis-Cummings model, only the latter is utilized to simulate effects of disorder on the photon population dynamics and the absorption spectra. We have demonstrated that the complementary employment of analytical and numerical methods permits uncovering a fairly comprehensive picture of a variety of complex behaviors in disordered multidimensional polaritonic cavity quantum electrodynamics systems.

12.
J Chem Phys ; 154(4): 044107, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33514101

RESUMO

Experimental measurements of electron transport properties of molecular junctions are often performed in solvents. Solvent-molecule coupling and physical properties of the solvent can be used as the external stimulus to control the electric current through a molecule. In this paper, we propose a model that includes dynamical effects of solvent-molecule interaction in non-equilibrium Green's function calculations of the electric current. The solvent is considered as a macroscopic dipole moment that reorients stochastically and interacts with the electrons tunneling through the molecular junction. The Keldysh-Kadanoff-Baym equations for electronic Green's functions are solved in the time domain with subsequent averaging over random realizations of rotational variables using the Furutsu-Novikov method for the exact closure of infinite hierarchy of stochastic correlation functions. The developed theory requires the use of wideband approximation as well as classical treatment of solvent degrees of freedom. The theory is applied to a model molecular junction. It is demonstrated that not only electrostatic interaction between molecular junction and solvent but also solvent viscosity can be used to control electrical properties of the junction. Alignment of the rotating dipole moment breaks the particle-hole symmetry of the transmission favoring either hole or electron transport channels depending upon the aligning potential.

13.
J Chem Phys ; 155(13): 134102, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624969

RESUMO

We present a unified and highly numerically efficient formalism for the simulation of quantum dynamics of complex molecular systems, which takes into account both temperature effects and static disorder. The methodology is based on the thermo-field dynamics formalism, and Gaussian static disorder is included into simulations via auxiliary bosonic operators. This approach, combined with the tensor-train/matrix-product state representation of the thermalized stochastic wave function, is applied to study the effect of dynamic and static disorders in charge-transfer processes in model organic semiconductor chains employing the Su-Schrieffer-Heeger (Holstein-Peierls) model Hamiltonian.

14.
J Chem Phys ; 155(19): 191102, 2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34800965

RESUMO

A long 0.9 ps lifetime of the upper excited singlet state in perylene is resolved by femtosecond pump-probe measurements under ultraviolet (4.96 eV) excitation and further validated by theoretical simulations of transient absorption kinetics. This finding prompts exploration and development of novel perylene-based materials for upper excited state photochemistry applications.

15.
J Chem Phys ; 154(11): 114108, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33752339

RESUMO

Confined nanoscale spaces, electric fields, and tunneling currents make the molecular electronic junction an experimental device for the discovery of new out-of-equilibrium chemical reactions. Reaction-rate theory for current-activated chemical reactions is developed by combining the Keldysh nonequilibrium Green's function treatment of electrons, Fokker-Planck description of the reaction coordinate, and Kramers first-passage time calculations. The nonequilibrium Green's functions (NEGF) provide an adiabatic potential as well as a diffusion coefficient and temperature with local dependence on the reaction coordinate. Van Kampen's Fokker-Planck equation, which describes a Brownian particle moving in an external potential in an inhomogeneous medium with a position-dependent friction and diffusion coefficient, is used to obtain an analytic expression for the first-passage time. The theory is applied to several transport scenarios: a molecular junction with a single reaction coordinate dependent molecular orbital and a model diatomic molecular junction. We demonstrate the natural emergence of Landauer's blowtorch effect as a result of the interplay between the configuration dependent viscosity and diffusion coefficients. The resultant localized heating in conjunction with the bond-deformation due to current-induced forces is shown to be the determining factors when considering chemical reaction rates, each of which results from highly tunable parameters within the system.

16.
J Chem Phys ; 154(5): 054105, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33557567

RESUMO

We have extended the multiconfigurational Ehrenfest approach to the simulation of four-wave-mixing signals of systems involving multiple electronic and vibrational degrees of freedom. As an illustration, we calculate signals of three widely used spectroscopic techniques, time- and frequency-resolved fluorescence spectroscopy, transient absorption spectroscopy, and two-dimensional (2D) electronic spectroscopy, for a two-electronic-state, twenty-four vibrational-mode conical intersection model. It has been shown that all these three spectroscopic signals characterize fast population transfer from the higher excited electronic state to the lower excited electronic state. While the time- and frequency-resolved spectrum maps the wave packet propagation exclusively on the electronically excited states, the transient absorption and 2D electronic spectra reflect the wave packet dynamics on both electronically excited states and the electronic ground state. Combining trajectory-guided Gaussian basis functions and the nonlinear response function formalism, the present approach provides a promising general technique for the applications of various Gaussian basis methods to the calculations of four-wave-mixing spectra of polyatomic molecules.

17.
Opt Express ; 28(18): 25806-25829, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906864

RESUMO

The effects of high pulse intensity and chirp on two-dimensional electronic spectroscopy signals are experimentally investigated in the highly non-perturbative regime using atomic rubidium vapor as clean model system. Data analysis is performed based on higher-order Feynman diagrams and non-perturbative numerical simulations of the system response. It is shown that higher-order contributions may lead to a fundamental change of the static appearance and beating-maps of the 2D spectra and that chirped pulses enhance or suppress distinct higher-order pathways. We further give an estimate of the threshold intensity beyond which the high-intensity effects become visible for the system under consideration.

18.
J Chem Phys ; 153(17): 174111, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33167631

RESUMO

We studied spectroscopic signatures of the nonadiabatic dynamics at conical intersections formed by the lowest excited singlet states in pyrazine. We considered two ab initio models of conical intersections in the excited states of pyrazine developed by Sala et al. [Phys. Chem. Chem. Phys. 16, 15957 (2014)]: a two-state (B2u and B3u), five-mode model and a three-state (B2u, B3u, and Au), nine-mode model. We simulated the signals of three widely used techniques: time- and frequency-resolved fluorescence spectroscopy, transient absorption pump-probe spectroscopy, and electronic two-dimensional spectroscopy. The signals were calculated through third-order response functions, which, in turn, were evaluated with the numerically accurate multiple Davydov ansatz. We establish spectroscopic signatures of the optically dark Au state and demonstrate that the key features of the photoinduced dynamics, such as electronic/nuclear populations, electronic/nuclear coherences, and electronic/nuclear energy transfer processes, are imprinted in the spectroscopic signals. We show that a fairly complete picture of the nonadiabatic dynamics at conical intersections can be obtained when several spectroscopic techniques are combined. Provided that the time resolution is sufficient, time- and frequency-resolved fluorescence may provide the best visualization of the nonadiabatic dynamics near conical intersections.

19.
J Chem Phys ; 153(19): 194106, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33218234

RESUMO

Finite-temperature dynamics of singlet fission in crystalline rubrene is investigated by utilizing the Dirac-Frenkel time-dependent variational method in combination with multiple Davydov D2 trial states. To probe temperature effects on the singlet fission process mediated by a conical intersection, the variational method is extended to include number state propagation with thermally averaged Boltzmann distribution as initialization. This allows us to simulate two-dimensional electronic spectroscopic signals of two-mode and three-mode models of crystalline rubrene in the temperature range from 0 K to 300 K. It is demonstrated that an elevated temperature facilitates excitonic population transfer and accelerates the singlet fission process. In addition, increasing temperature leads to dramatic changes in two-dimensional spectra, thanks to temperature-dependent electronic dephasing and to an increased number of system eigenstates amenable to spectroscopic probing.

20.
J Chem Phys ; 151(3): 034101, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31325944

RESUMO

We study the effect of a dissipative environment on the orientational relaxation of a three-dimensional quantum linear rotor. We provide a derivation of the Hamiltonian of a linear rotor coupled to a harmonic bath from first principles, confirming earlier conjectures. The dynamics generated by this Hamiltonian is investigated by the hierarchical equations-of-motion method assuming a Drude spectral density of the bath. We perform numerically accurate simulations and analyze the behavior of orientational correlation functions and the rotational structures of infrared absorption and Raman scattering spectra. We explore the features of orientational correlation functions and their spectra for a wide range of system-bath couplings, bath memory times, and temperatures. We discuss the signatures of the orientational relaxation in the underdamped regime, the strongly damped regime, and the librational regime. We show that the behavior of orientational correlation functions and their spectra can conveniently be analyzed in terms of three characteristic times, which are explicitly expressed in terms of the parameters of the Hamiltonian.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA