Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Appl Clin Med Phys ; 20(5): 99-108, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30972922

RESUMO

PURPOSE: The aim of this work is to describe the clinical implementation of respiratory-gated spot-scanning proton therapy (SSPT) for the treatment of thoracic and abdominal moving targets. The experience of our institution is summarized, from initial acceptance and commissioning tests to the development of standard clinical operating procedures for simulation, motion assessment, motion mitigation, treatment planning, and gated SSPT treatment delivery. MATERIALS AND METHODS: A custom respiratory gating interface incorporating the Real-Time Position Management System (RPM, Varian Medical Systems, Inc., Palo Alto, CA, USA) was developed in-house for our synchrotron-based delivery system. To assess gating performance, a motion phantom and radiochromic films were used to compare gated vs nongated delivery. Site-specific treatment planning protocols and conservative motion cutoffs were developed, allowing for free-breathing (FB), breath-holding (BH), or phase-gating (Ph-G). Room usage efficiency of BH and Ph-G treatments was retrospectively evaluated using beam delivery data retrieved from our record and verify system and DICOM files from patient-specific quality assurance (QA) procedures. RESULTS: More than 70 patients were treated using active motion management between the launch of our motion mitigation program in October 2015 and the end date of data collection of this study in January 2018. During acceptance procedures, we found that overall system latency is clinically-suitable for Ph-G. Regarding room usage efficiency, the average number of energy layers delivered per minute was <10 for Ph-G, 10-15 for BH and ≥15 for FB, making Ph-G the slowest treatment modality. When comparing to continuous delivery measured during pretreatment QA procedures, the median values of BH treatment time were extended from 6.6 to 9.3 min (+48%). Ph-G treatments were extended from 7.3 to 13.0 min (+82%). CONCLUSIONS: Active motion management has been crucial to the overall success of our SSPT program. Nevertheless, our conservative approach has come with an efficiency cost that is more noticeable in Ph-G treatments and should be considered in decision-making.


Assuntos
Neoplasias Abdominais/radioterapia , Movimento , Imagens de Fantasmas , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Neoplasias Torácicas/radioterapia , Suspensão da Respiração , Humanos , Prognóstico , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Síncrotrons/instrumentação
2.
J Appl Clin Med Phys ; 19(2): 83-92, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29349933

RESUMO

The objective of this study was to assess the recommended DVH parameter (e.g., D2 cc) addition method used for combining EBRT and HDR plans, against a reference dataset generated from an EQD2-based DVH addition method. A revised DVH parameter addition method using EBRT DVH parameters derived from each patient's plan was proposed and also compared with the reference dataset. Thirty-one biopsy-proven cervical cancer patients who received EBRT and HDR brachytherapy were retrospectively analyzed. A parametrial and/or paraaortic EBRT boost were clinically performed on 13 patients. Ten IMRT and 21 3DCRT plans were determined. Two different HDR techniques for each HDR plan were analyzed. Overall D2 cc and D0.1 cc OAR doses in EQD2 were statistically analyzed for three different DVH parameter addition methods: a currently recommended method, a proposed revised method, and a reference DVH addition method. The overall D2 ccEQD2 values for all rectum, bladder, and sigmoid for a conformal, volume optimization HDR plan generated using the current DVH parameter addition method were significantly underestimated on average -5 to -8% when compared to the values obtained from the reference DVH addition technique (P < 0.01). The revised DVH parameter addition method did not present statistical differences with the reference technique (P > 0.099). When PM boosts were considered, there was an even greater average underestimation of -8~-10% for overall OAR doses of conformal HDR plans when using the current DVH parameter addition technique as compared to the revised DVH parameter addition. No statistically significant differences were found between the 3DCRT and IMRT techniques (P > 0.3148). It is recommended that the overall D2 cc EBRT doses are obtained from each patient's EBRT plan.


Assuntos
Braquiterapia/métodos , Imageamento Tridimensional/métodos , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias do Colo do Útero/radioterapia , Feminino , Humanos , Prognóstico , Dosagem Radioterapêutica , Estudos Retrospectivos
3.
Med Phys ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153223

RESUMO

BACKGROUND: Ultra high dose rate (UHDR) radiotherapy using ridge filter is a new treatment modality known as conformal FLASH that, when optimized for dose, dose rate (DR), and linear energy transfer (LET), has the potential to reduce damage to healthy tissue without sacrificing tumor killing efficacy via the FLASH effect. PURPOSE: Clinical implementation of conformal FLASH proton therapy has been limited by quality assurance (QA) challenges, which include direct measurement of UHDR and LET. Voxel DR distributions and LET spectra at planning target margins are paramount to the DR/LET-related sparing of organs at risk. We hereby present a methodology to achieve experimental validation of these parameters. METHODS: Dose, DR, and LET were measured for a conformal FLASH treatment plan involving a 250-MeV proton beam and a 3D-printed ridge filter designed to uniformly irradiate a spherical target. We measured dose and DR simultaneously using a 4D multi-layer strip ionization chamber (MLSIC) under UHDR conditions. Additionally, we developed an "under-sample and recover (USRe)" technique for a high-resolution pixelated semiconductor detector, Timepix3, to avoid event pile-up and to correct measured LET at high-proton-flux locations without undesirable beam modifications. Confirmation of these measurements was done using a MatriXX PT detector and by Monte Carlo (MC) simulations. RESULTS: MC conformal FLASH computed doses had gamma passing rates of >95% (3 mm/3% criteria) when compared to MatriXX PT and MLSIC data. At the lateral margin, DR showed average agreement values within 0.3% of simulation at 100 Gy/s and fluctuations ∼10% at 15 Gy/s. LET spectra in the proximal, lateral, and distal margins had Bhattacharyya distances of <1.3%. CONCLUSION: Our measurements with the MLSIC and Timepix3 detectors shown that the DR distributions for UHDR scenarios and LET spectra using USRe are in agreement with simulations. These results demonstrate that the methodology presented here can be used effectively for the experimental validation and QA of FLASH treatment plans.

4.
Med Phys ; 43(8): 4693, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27487886

RESUMO

PURPOSE: To quantitatively assess the advantages of energy-layer specific dynamic collimation system (DCS) versus a per-field fixed aperture for spot scanning proton therapy (SSPT). METHODS: Five brain cancer patients previously planned and treated with SSPT were replanned using an in-house treatment planning system capable of modeling collimated and uncollimated proton beamlets. The uncollimated plans, which served as a baseline for comparison, reproduced the target coverage and organ-at-risk sparing of the clinically delivered plans. The collimator opening for the fixed aperture-based plans was determined from the combined cross sections of the target in the beam's eye view over all energy layers which included an additional margin equivalent to the maximum beamlet displacement for the respective energy of that energy layer. The DCS-based plans were created by selecting appropriate collimator positions for each row of beam spots during a Raster-style scanning pattern which were optimized to maximize the dose contributions to the target and limited the dose delivered to adjacent normal tissue. RESULTS: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring surrounding the target, averaged 13.65% (range: 11.8%-16.9%) and 5.18% (2.9%-7.1%) for the DCS and fixed aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 21.35% (19.4%-22.6%) and 8.38% (4.7%-12.0%) for the DCS and fixed aperture plans, respectively. CONCLUSIONS: The ability of the DCS to provide collimation to each energy layer yielded better conformity in comparison to fixed aperture plans.


Assuntos
Neoplasias Encefálicas/radioterapia , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos
5.
Int J Part Ther ; 2(4): 544-554, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31772966

RESUMO

PURPOSE: Interest in using collimation for spot scanning proton therapy has recently increased in an attempt to improve the lateral penumbra. To investigate the advantages of such an approach for complex targets, a plan comparison between uncollimated and collimated beam spots was performed for patients with head and neck cancer. PATIENTS AND METHODS: For 10 patients with head and neck cancer, previously treated with spot scanning proton therapy, uncollimated and collimated treatment plans were created using an in-house treatment-planning system capable of modeling asymmetric-beamlet dose distributions resulting from the use of a dynamic collimation system. Both uncollimated and collimated plans reproduced clinically delivered plans in terms of target coverage. A relative plan comparison was performed using both physical and radiobiological metrics on the organs at risk. RESULTS: The dynamic collimation system improved dose-distribution conformity while preserving target coverage. The median reduction of the mean dose to the esophagus, uninvolved larynx, and uninvolved parotids were -11.9% (minimum to maximum, -6.4% to -24.1%), -7.2% (-0.8% to -60.1%), and -5.2% (-0.2% to -21.5%), respectively, and depended on the organ location relative to the target and radiation beam angle. The collimation did not improve dose to some organs at risk surrounded by the target or located upstream of Bragg peaks because of the priority on the target coverage. CONCLUSION: In spot scanning proton therapy, the dynamic collimation system generally affords better target conformity, which results in improvement in organ-at-risk sparing in the head and neck region while preserving target coverage. However, the benefits of collimation and the increased complexity should be considered for each patient. Patients with large bilateral targets or organs at risk surrounded by the target showed the least benefit.

6.
Int J Radiat Oncol Biol Phys ; 95(1): 171-180, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26614424

RESUMO

PURPOSE: To quantify the dosimetric benefit of using a dynamic collimation system (DCS) for penumbra reduction during the treatment of brain tumors by pencil beam scanning proton therapy (PBS PT). METHODS AND MATERIALS: Collimated and uncollimated brain treatment plans were created for 5 patients previously treated with PBS PT and retrospectively enrolled in an institutional review board-approved study. The in-house treatment planning system, RDX, was used to generate the plans because it is capable of modeling both collimated and uncollimated beamlets. The clinically delivered plans were reproduced with uncollimated plans in terms of target coverage and organ at risk (OAR) sparing to ensure a clinically relevant starting point, and collimated plans were generated to improve the OAR sparing while maintaining target coverage. Physical and biological comparison metrics, such as dose distribution conformity, mean and maximum doses, normal tissue complication probability, and risk of secondary brain cancer, were used to evaluate the plans. RESULTS: The DCS systematically improved the dose distribution conformity while preserving the target coverage. The average reduction of the mean dose to the 10-mm ring surrounding the target and the healthy brain were 13.7% (95% confidence interval [CI] 11.6%-15.7%; P<.0001) and 25.1% (95% CI 16.8%-33.4%; P<.001), respectively. This yielded an average reduction of 24.8% (95% CI 0.8%-48.8%; P<.05) for the brain necrosis normal tissue complication probability using the Flickinger model, and 25.1% (95% CI 16.8%-33.4%; P<.001) for the risk of secondary brain cancer. A general improvement of the OAR sparing was also observed. CONCLUSION: The lateral penumbra reduction afforded by the DCS increases the normal tissue sparing capabilities of PBS PT for brain cancer treatment while preserving target coverage.


Assuntos
Neoplasias Encefálicas/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Encéfalo/patologia , Encéfalo/efeitos da radiação , Humanos , Necrose , Tratamentos com Preservação do Órgão/instrumentação , Tratamentos com Preservação do Órgão/métodos , Órgãos em Risco/efeitos da radiação , Terapia com Prótons/instrumentação , Lesões por Radiação/prevenção & controle , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Espalhamento de Radiação , Fatores de Tempo
7.
Med Phys ; 43(3): 1421-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26936726

RESUMO

PURPOSE: To quantify improvement in target conformity in brain and head and neck tumor treatments resulting from the use of a dynamic collimation system (DCS) with two spot scanning proton therapy delivery systems (universal nozzle, UN, and dedicated nozzle, DN) with median spot sizes of 5.2 and 3.2 mm over a range of energies from 100 to 230 MeV. METHODS: Uncollimated and collimated plans were calculated with both UN and DN beam models implemented within our in-house treatment planning system for five brain and ten head and neck datasets in patients previously treated with spot scanning proton therapy. The prescription dose and beam angles from the clinical plans were used for both the UN and DN plans. The average reduction of the mean dose to the 10-mm ring surrounding the target between the uncollimated and collimated plans was calculated for the UN and the DN. Target conformity was analyzed using the mean dose to 1-mm thickness rings surrounding the target at increasing distances ranging from 1 to 10 mm. RESULTS: The average reductions of the 10-mm ring mean dose for the UN and DN plans were 13.7% (95% CI: 11.6%-15.7%; p < 0.0001) and 11.5% (95% CI: 9.5%-13.5%; p < 0.0001) across all brain cases and 7.1% (95% CI: 4.4%-9.8%; p < 0.001) and 6.3% (95% CI: 3.7%-9.0%; p < 0.001), respectively, across all head and neck cases. The collimated UN plans were either more conformal (all brain cases and 60% of the head and neck cases) than or equivalent (40% of the head and neck cases) to the uncollimated DN plans. The collimated DN plans offered the highest conformity. CONCLUSIONS: The DCS added either to the UN or DN improved the target conformity. The DCS may be of particular interest for sites with UN systems looking for a more economical solution than upgrading the nozzle to improve the target conformity of their spot scanning proton therapy system.


Assuntos
Terapia com Prótons/métodos , Humanos , Neoplasias/radioterapia , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Água
8.
Phys Med Biol ; 60(7): N109-19, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25776926

RESUMO

The use of collimator or aperture may sharpen the lateral dose gradient for spot scanning proton therapy. However, to date, there has not been a standard method to determine the aperture margin for a single field in collimated spot scanning proton therapy. This study describes a theoretical framework to select the optimal aperture margin for a single field, and also presents the spot spacing limit required such that the optimal aperture margin exists. Since, for a proton pencil beam partially intercepted by collimator, the maximum point dose (spot center) shifts away from the original pencil beam central axis, we propose that the optimal margin should be equal to the maximum pencil beam center shift under the condition that spot spacing is small with respect to the maximum pencil beam center shift, which can be numerically determined based on beam modeling data. A test case is presented which demonstrates agreement with the prediction made based on the proposed methods. When apertures are applied in a commercial treatment planning system this method may be implemented.


Assuntos
Algoritmos , Terapia com Prótons/métodos , Terapia com Prótons/instrumentação , Dosagem Radioterapêutica
9.
Med Phys ; 42(3): 1321-34, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25735287

RESUMO

PURPOSE: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. METHODS: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam's eye view (BEV). The BEV parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σ(x1),σ(x2),σ(y1),σ(y2)) together with the spatial location of the maximum dose (µ(x),µ(y)). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong's fit of the Highland approximation along each axis in the BEV. RESULTS: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. CONCLUSIONS: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets.


Assuntos
Método de Monte Carlo , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA