Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 116(2): 110784, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38199265

RESUMO

Bacterial wilt (BW) caused by Ralstonia solanacearum is a globally prevalent bacterial soil-borne disease. In this study, transcriptome sequencing were subjected to roots after infection with the R. solanacearum in the resistant and susceptible tobacco variety. DEGs that responded to R. solanacearum infection in both resistant and susceptible tobacco contributed to pectinase and peroxidase development and were enriched in plant hormone signal transduction, signal transduction and MAPK signalling pathway KEGG terms. Core DEGs in the resistant tobacco response to R. solanacearum infection were enriched in cell wall, membrane, abscisic acid and ethylene terms. qRT-PCR indicated that Nitab4.5_0004899g0110, Nitab4.5_0004234g0080 and Nitab4.5_0001439g0050 contributed to the response to R. solanacearum infection in different resistant and susceptible tobacco. Silencing the p450 gene Nitab4.5_0001439g0050 reduced tobacco resistance to bacterial wilt. These results improve our understanding of the molecular mechanism of BW resistance in tobacco and solanaceous plants.


Assuntos
Ralstonia solanacearum , Ralstonia solanacearum/genética , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/farmacologia , Ácido Abscísico , Nicotiana/genética , Inativação Gênica , Resistência à Doença/genética
2.
Genomics ; 116(3): 110823, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492820

RESUMO

The TIFY gene family plays an essential role in plant development and abiotic and biotic stress responses. In this study, genome-wide identification of TIFY members in tobacco and their expression pattern analysis in response to Ralstonia solanacearum infection were performed. A total of 33 TIFY genes were identified, including the TIFY, PPD, ZIM&ZML and JAZ subfamilies. Promoter analysis results indicated that a quantity of light-response, drought-response, SA-response and JA-response cis-elements exist in promoter regions. The TIFY gene family exhibited expansion and possessed gene redundancy resulting from tobacco ploidy change. In addition, most NtTIFYs equivalently expressed in roots, stems and leaves, while NtTIFY1, NtTIFY4, NtTIFY18 and NtTIFY30 preferentially expressed in roots. The JAZ III clade showed significant expression changes after inoculation with R. solanacearum, and the expression of NtTIFY7 in resistant varieties, compared with susceptible varieties, was more stably induced. Furthermore, NtTIFY7-silenced plants, compared with the control plants, were more susceptible to bacterial wilt. These results lay a foundation for exploring the evolutionary history of TIFY gene family and revealing gene function of NtTIFYs in tobacco bacterial wilt resistance.


Assuntos
Família Multigênica , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Ralstonia solanacearum , Ralstonia solanacearum/genética , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Resistência à Doença/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Regiões Promotoras Genéticas
3.
Plant Cell Environ ; 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39400398

RESUMO

Fusarium oxysporum, an important soilborne fungal pathogen that causes serious Fusarium wilt disease, secretes diverse effectors during the infection. In this study, we identified a novel secreted cysteine-rich protein, FolSCP1, which contains unknown protein functional domain. Here, we characterized FolSCP1 as a secreted virulence factor that promotes the pathogen infection of host plants by inhibiting diverse plant defence responses. FolSCP1 interacted with the pathogenesis-related 5 (PR-5) protein SlPR5, a positive regulator of tomato plant immunity against multiple tomato pathogens, and effectively attenuated the antifungal activity of the tomato PR-5 protein. FoSCP1, a homologue of FolSCP1, was secreted by a F. oxysporum isolate from infected tobacco and targeted the tobacco PR-5 protein NtPR5 to suppress plant defence for further infection. In summary, our study revealed a fungal virulence strategy in which F. oxysporum secrete effectors that interfere with plant immunity by binding to the PR-5 protein of the host plant and inhibiting its biological activity, thereby promoting fungal infection.

4.
BMC Plant Biol ; 20(1): 378, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807096

RESUMO

BACKGROUND: At present, the distinctness, uniformity, and stability (DUS) testing of flue-cured tobacco (Nicotiana tabacum L.) depends on field morphological identification, which is problematic in that it is labor intensive, time-consuming, and susceptible to environmental impacts. In order to improve the efficiency and accuracy of tobacco DUS testing, the development of a molecular marker-based method for genetic diversity identification is urgently needed. RESULTS: In total, 91 simple sequence repeats (SSR) markers with clear and polymorphic amplification bands were obtained with polymorphism information content, Nei index, and Shannon information index values of 0.3603, 0.4040, and 0.7228, respectively. Clustering analysis showed that the 33 study varieties, which are standard varieties for flue-cured tobacco DUS testing, could all be distinguished from one another. Further analysis showed that a minimum of 25 markers were required to identify the genetic diversity of these varieties. Following the principle of two markers per linkage group, 48 pairs of SSR markers were selected. Correlation analysis showed that the genetic relationships revealed by the 48 SSR markers were consistent with those found using the 91 SSR markers. CONCLUSIONS: The genetic fingerprints of the 33 standard varieties of flue-cured tobacco were constructed using 48 SSR markers, and an SSR marker-based identification technique for new tobacco varieties was developed. This study provides a reliable technological approach for determining the novelty of new tobacco varieties and offers a solid technical basis for the accreditation and protection of new tobacco varieties.


Assuntos
Variação Genética , Nicotiana/genética , Nicotiana/fisiologia , Impressões Digitais de DNA , Repetições de Microssatélites , Especificidade da Espécie
5.
Gene ; 927: 148622, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878988

RESUMO

MYC2 is a class of bHLH family transcription factors and a major regulatory factor in the JA signaling pathway, and its molecular function in tobacco has not been reported. In this study, CRISPR/Cas9-mediated MYC2 gene NtMYC2a knockout mutants at tobacco was obtained and its agronomic traits, disease resistance, and chemical composition were identified. Comparing with the WT, the leaf width of the KO-NtMYC2a was narrowed, the nornicotine content and mecamylamine content increased significantly and the resistance to Ralstonia solanacearum significantly decreased. The transcriptome sequencing results showed that DEGs related to immunity, signal transduction and growth and development were enriched between KO-NtMYC2a and WT. NtJAR1 and NtCOI1 in KO-NtMYC2a were down-regulated to regulating the JA signaling pathway, result in a significant decrease in tobacco's resistance to R. solanacearum. Our research provides theoretical support for the functional research of MYC2 and the study of the mechanism of tobacco bacterial wilt resistance.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Ralstonia solanacearum , Nicotiana/genética , Nicotiana/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Ralstonia solanacearum/patogenicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Inativação de Genes , Ciclopentanos/metabolismo , Transdução de Sinais , Oxilipinas/metabolismo , Plantas Geneticamente Modificadas/genética
6.
Front Microbiol ; 15: 1335081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550868

RESUMO

Introduction: Plant bacterial wilt is an important worldwide disease caused by Ralstonia solanacearum which is a complex of species. Methods: In this study, we identified and sequenced the genome of R. solanacearum strain gd-2 isolated from tobacco. Results: Strain gd-2 was identified as R. solanacearum species complex (RSSC) phylotype I sequevar 15 and exhibited strong pathogenicity to tobacco. The genome size of gd-2 was 5.93 Mb, including the chromosomes (3.83 Mb) and the megaplasmid (2.10 Mb). Gene prediction results showed that 3,434 and 1,640 genes were identified in the chromosomes and plasmids, respectively. Comparative genomic analysis showed that gd-2 exhibited high conservation with ten highly similar strain genomes and the differences between gd-2 and other genomes were mainly located at positions GI12-GI14. 72 type III effectors (T3Es) were identified and RipAZ2 was a T3E specific to gd-2 compared with other eight sequenced strain. Discussion: Our study provides a new basis and evidence for studying the pathogenic mechanism of R. solanacearum.

7.
Front Microbiol ; 13: 854792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602040

RESUMO

Ralstonia solanacearum species complex (RSSC) is a diverse group of plant pathogens that attack a wide range of hosts and cause devastating losses worldwide. In this study, we conducted a comprehensive analysis of 131 RSSC strains to detect their genetic diversity, pathogenicity, and evolution dynamics. Average nucleotide identity analysis was performed to explore the genomic relatedness among these strains, and finally obtained an open pangenome with 32,961 gene families. To better understand the diverse evolution and pathogenicity, we also conducted a series of analyses of virulence factors (VFs) and horizontal gene transfer (HGT) in the pangenome and at the single genome level. The distribution of VFs and mobile genetic elements (MGEs) showed significant differences among different groups and strains, which were consistent with the new nomenclatures of the RSSC with three distinct species. Further functional analysis showed that most HGT events conferred from Burkholderiales and played a great role in shaping the genomic plasticity and genetic diversity of RSSC genomes. Our work provides insights into the genetic polymorphism, evolution dynamics, and pathogenetic variety of RSSC and provides strong supports for the new taxonomic classification, as well as abundant resources for studying host specificity and pathogen emergence.

8.
Front Plant Sci ; 12: 767882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970284

RESUMO

Bacterial wilt (BW) caused by Ralstonia solanacearum (R. solanacearum), is a vascular disease affecting diverse solanaceous crops and causing tremendous damage to crop production. However, our knowledge of the mechanism underlying its resistance or susceptibility is very limited. In this study, we characterized the physiological differences and compared the defense-related transcriptomes of two tobacco varieties, 4411-3 (highly resistant, HR) and K326 (moderately resistant, MR), after R. solanacearum infection at 0, 10, and 17 days after inoculation (dpi). A total of 3967 differentially expressed genes (DEGs) were identified between the HR and MR genotypes under mock condition at three time points, including1395 up-regulated genes in the HR genotype and 2640 up-regulated genes in the MR genotype. Also, 6,233 and 21,541 DEGs were induced in the HR and MR genotypes after R. solanacearum infection, respectively. Furthermore, GO and KEGG analyses revealed that DEGs in the HR genotype were related to the cell wall, starch and sucrose metabolism, glutathione metabolism, ABC transporters, endocytosis, glycerolipid metabolism, and glycerophospholipid metabolism. The defense-related genes generally showed genotype-specific regulation and expression differences after R. solanacearum infection. In addition, genes related to auxin and ABA were dramatically up-regulated in the HR genotype. The contents of auxin and ABA in the MR genotype were significantly higher than those in the HR genotype after R. solanacearum infection, providing insight into the defense mechanisms of tobacco. Altogether, these results clarify the physiological and transcriptional regulation of R. solanacearum resistance infection in tobacco, and improve our understanding of the molecular mechanism underlying the plant-pathogen interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA