RESUMO
Age-related macular degeneration (AMD), a multifactorial, neurodegenerative disease, is a leading cause of vision loss. With the rapid advancement of DNA sequencing technologies, many AMD-associated genetic polymorphisms have been identified. Currently, the most time consuming steps of these studies are patient recruitment and phenotyping. In this study, we describe the development of an automated algorithm to identify neovascular (wet) AMD, non-neovascular (dry) AMD and control subjects using electronic medical record (EMR)-based criteria. Positive predictive value (91.7%) and negative predictive value (97.5%) were calculated using expert chart review as the gold standard to assess algorithm performance. We applied the algorithm to an EMR-linked DNA bio-repository to study previously identified AMD-associated single nucleotide polymorphisms (SNPs), using case/control status determined by the algorithm. Risk alleles of three SNPs, rs1061170 (CFH), rs1410996 (CFH), and rs10490924 (ARMS2) were found to be significantly associated with the AMD case/control status as defined by the algorithm. With the rapid growth of EMR-linked DNA biorepositories, patient selection algorithms can greatly increase the efficiency of genetic association study. We have found that stepwise validation of such an algorithm can result in reliable cohort selection and, when coupled within an EMR-linked DNA biorepository, replicates previously published AMD-associated SNPs.
Assuntos
Algoritmos , Estudos de Associação Genética , Degeneração Macular/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Fator H do Complemento/genética , Demografia , Feminino , Genótipo , Humanos , Degeneração Macular/diagnóstico , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas/genéticaRESUMO
We conducted pooled and meta-analyses of the association of the calpain-10 gene (CAPN10) polymorphisms SNP-43, Indel-19 and SNP-63 individually and as haplotypes with type 2 diabetes (T2D) in 3237 patients and 2935 controls of European ancestry. In the pooled analyses, the common SNP-43*G allele was associated with modest but statistically significant increased risk of T2D (odds ratio (OR)=1.11 (95% confidence interval (CI), 1.02-1.20), P=0.01). Two haplotype combinations were associated with increased risk of T2D (1-2-1/1-2-1, OR=1.20 (1.03-1.41), P=0.02; and 1-1-2/1-2-1, OR=1.26 (1.01-1.59), P=0.04) and one with decreased risk (1-1-1/2-2-1, OR=0.86 (0.75-0.99), P=0.03). The meta-analysis also showed a significant effect of the 1-2-1/1-2-1 haplogenotype on risk (OR=1.25 (1.05-1.50), P=0.01). However, there was evidence for heterogeneity with respect to this effect (P=0.06). The heterogeneity appeared to be due to data sets in which the cases were selected from samples used in linkage studies of T2D. Using only the population-based case-control samples removed the heterogeneity (P=0.89) and strengthened the evidence for association with T2D in both the pooled (SNP-43*G, OR=1.19 (1.07-1.32), P=0.001; 1-2-1/1-2-1 haplogenotype, OR=1.46 (1.19-1.78), P=0.0003; 1-1-2/1-2-1 haplogenotype, OR=1.52 (1.12-2.06), P=0.007; and 1-1-1/2-2-1 haplogenotype, OR=0.83 (0.70-0.99), P=0.03) and the meta-analysis (SNP-43*G, OR=1.18 (1.05-1.32), P=0.005; 1-2-1/1-2-1 haplogenotype, OR=1.68 (1.33-2.11), P=0.00001). The pooled and meta-analyses as well as the linkage disequilibrium and haplotype diversity studies suggest a role for genetic variation in CAPN10 affecting risk of T2D in Europeans.