Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Sci Technol ; 48(24): 14782-9, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25393130

RESUMO

Speciated volatile organic compounds (VOCs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a chassis dynamometer at two ambient temperatures (-7 and 22 °C) operating on two fuels (ultra low sulfur diesel and 20% soy biodiesel blend) over three driving cycles: cold start, warm start and heavy-duty urban dynamometer driving cycle. VOCs were measured separately for each drive cycle. Carbonyls such as formaldehyde and acetaldehyde dominated VOC emissions, making up ∼ 72% of the sum of the speciated VOC emissions (∑VOCs) overall. Biodiesel use led to minor reductions in aromatics and variable changes in carbonyls. Cold temperature and cold start conditions caused dramatic enhancements in VOC emissions, mostly carbonyls, compared to the warmer temperature and other drive cycles, respectively. Different 2007+ aftertreatment technologies involving catalyst regeneration led to significant modifications of VOC emissions that were compound-specific and highly dependent on test conditions. A comparison of this work with emission rates from different diesel engines under various test conditions showed that these newer technologies resulted in lower emission rates of aromatic compounds. However, emissions of other toxic partial combustion products such as carbonyls were not reduced in the modern diesel vehicles tested.


Assuntos
Poluentes Atmosféricos/análise , Biocombustíveis , Temperatura Baixa , Gasolina , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise , Veículos Automotores , Glycine max
2.
Regul Toxicol Pharmacol ; 69(3): 434-42, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24845241

RESUMO

Biomonitoring data are now available for hundreds of chemicals through state and national health surveys. Exposure guidance values also exist for many of these chemicals. Several methods are frequently used to evaluate biomarker data with respect to a guidance value. The "biomonitoring equivalent" (BE) approach estimates a single biomarker concentration (called the BE) that corresponds to a guidance value (e.g., Maximum Contaminant Level, Reference Dose, etc.), which can then be compared with measured biomarker data. The resulting "hazard quotient" estimates (HQ=biomarker concentration/BE) can then be used to prioritize chemicals for follow-up examinations. This approach is used exclusively for population-level assessments, and works best when the central tendency of measurement data is considered. Complementary approaches are therefore needed for assessing individual biomarker levels, particularly those that fall within the upper percentiles of measurement distributions. In this case study, probabilistic models were first used to generate distributions of BEs for perchlorate based on the point-of-departure (POD) of 7µg/kg/day. These distributions reflect possible biomarker concentrations in a hypothetical population where all individuals are exposed at the POD. A statistical analysis was then performed to evaluate urinary perchlorate measurements from adults in the 2001 to 2002 National Health and Nutrition Examination Survey (NHANES). Each NHANES adult was assumed to have experienced repeated exposure at the POD, and their biomarker concentration was interpreted probabilistically with respect to a BE distribution. The HQ based on the geometric mean (GM) urinary perchlorate concentration was estimated to be much lower than unity (HQ≈0.07). This result suggests that the average NHANES adult was exposed to perchlorate at a level well below the POD. Regarding individuals, at least a 99.8% probability was calculated for all but two NHANES adults that a higher biomarker concentration would have been observed compared to what was actually measured if the daily dietary exposure had been at the POD. This is strong evidence that individual perchlorate exposures in the 2001-2002 NHANES adult population were likely well below the POD. This case study demonstrates that the "stochastic BE approach" provides useful quantitative metrics, in addition to HQ estimates, for comparison across chemicals. This methodology should be considered when evaluating biomarker measurements against exposure guidance values, and when examining chemicals that have been identified as needing follow-up investigation based on existing HQ estimates.


Assuntos
Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/efeitos adversos , Adulto , Idoso de 80 Anos ou mais , Biomarcadores/química , Biomarcadores/urina , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/urina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Inquéritos Nutricionais , Percloratos/efeitos adversos , Percloratos/química , Percloratos/urina , Medição de Risco , Adulto Jovem
3.
Environ Sci Technol ; 47(2): 1137-47, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23253114

RESUMO

Chronic low-level cadmium (Cd) exposure is linked to kidney and cardiovascular disease, fractures, and cancer. Diet and smoking are primary sources of exposure in the general population. We analyzed urinary Cd in NHANES 1999-2008 to determine whether levels declined significantly over the decade for U.S. children, teens, and adults (nonsmokers and smokers) and, if so, factors influencing the decline(s). For each subpopulation, we modeled log urinary Cd using variable-threshold censored multiple regression. Models included individual-level covariates (age, gender, BMI, income, race/ethnicity/country of origin, education, survey period), smoking, housing (home age, water source, filter use), and diet (supplement use; 24-h calorie, fat, protein, micronutrient, and Cd-containing food intakes), creatinine, and survey year variables. Geometric mean urinary Cd (ng/mL) declined 20-25% in these subpopulations, and the regressions showed statistically significant declines in later years for teens and adults. While certain covariates were significantly associated with Cd by subpopulation (creatinine; age; BMI; race/ethnicity/origin; education; smokers in the home; serum cotinine; 24-h fat, Mg, Fe intakes; use of dietary supplements), they did not help explain the declines. Instead, unidentified time-related factors appeared responsible. Despite the declines, millions of Americans remain potentially at risk of adverse outcomes associated with low-level Cd exposure.


Assuntos
Cádmio/urina , Inquéritos Nutricionais , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Criança , Cotinina/sangue , Creatinina/urina , Dieta , Exposição Ambiental/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Regressão , Fumar/urina , Adulto Jovem
4.
Environ Sci Technol ; 47(24): 14502-9, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24246086

RESUMO

This study examines the chemical properties of carbonaceous aerosols emitted from three light-duty gasoline vehicles (LDVs) operating on gasoline (e0) and ethanol-gasoline fuel blends (e10 and e85). Vehicle road load simulations were performed on a chassis dynamometer using the three-phase LA-92 unified driving cycle (UDC). Effects of LDV operating conditions and ambient temperature (-7 and 24 °C) on particle-phase semivolatile organic compounds (SVOCs) and organic and elemental carbon (OC and EC) emissions were investigated. SVOC concentrations and OC and EC fractions were determined with thermal extraction-gas chromatography-mass spectrometry (TE-GC-MS) and thermal-optical analysis (TOA), respectively. LDV aerosol emissions were predominantly carbonaceous, and EC/PM (w/w) decreased linearly with increasing fuel ethanol content. TE-GC-MS analysis accounted for up to 4% of the fine particle (PM2.5) mass, showing the UDC phase-integrated sum of identified SVOC emissions ranging from 0.703 µg km(-1) to 18.8 µg km(-1). Generally, higher SVOC emissions were associated with low temperature (-7 °C) and engine ignition; mixed regression models suggest these emissions rate differences are significant. Use of e85 significantly reduced the emissions of lower molecular weight PAH. However, a reduction in higher molecular weight PAH entities in PM was not observed. Individual SVOC emissions from the Tier 2 LDVs and fuel technologies tested are substantially lower and distributed differently than those values populating the United States emissions inventories currently. Hence, this study is likely to influence future apportionment, climate, and air quality model predictions that rely on source combustion measurements of SVOCs in PM.


Assuntos
Aerossóis/análise , Carbono/análise , Etanol/química , Gasolina , Veículos Automotores , Emissões de Veículos/análise , Cromatografia Gasosa-Espectrometria de Massas , Fenômenos Ópticos , Material Particulado/análise , Temperatura , Estados Unidos , Compostos Orgânicos Voláteis/análise
5.
Sci Total Environ ; 905: 167135, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37739076

RESUMO

There is strong scientific evidence for multiple pathways of human exposure to lead (Pb) in residential settings, particularly for young children; however, less is known about maternal exposure during pregnancy and children's exposure during early lifestages. A robust, multi-faceted secondary analysis was conducted using data collected by the National Institute of Child Health and Human Development in the 2009-2014 National Children's Study Vanguard Studies. Descriptive statistics summarized Pb concentrations of maternal blood, maternal urine, and house dust vacuum samples collected during pregnancy and residence surface wipes collected both during pregnancy and six months post-partum. The maternal blood Pb level geometric mean was 0.44 µg/dL (n = 426), with no women having values ≥ 5 µg/dL; creatinine-adjusted maternal urinary Pb geometric mean was 0.43 µg/g (n = 366). These blood and urine concentrations are similar to those observed for females in the general U.S. population in the National Health and Nutrition Examination Survey 2010-2011 cycle. A modest correlation between maternal blood Pb and surface wipe measurements during pregnancy was observed (Spearman r = 0.35, p < 0.0001). Surface wipe Pb loadings obtained in mother's homes during pregnancy (n = 640) and from areas where children spent the most time at roughly 6 months of age (n = 99) ranged from 0.02 to 71.8 ng/cm2, with geometric means of 0.47 and 0.49 ng/cm2, respectively, which were relatively low compared to other national studies. Survey responses of demographic, lifestyle, and residence characteristics were assessed for associations with blood concentration and surface wipe loading. Demographic (e.g., race/ethnicity, income, education, marital status) and housing characteristics (e.g., year home built, paint condition, own or rent home, attached garage) were associated with both maternal blood and surface wipe loadings during pregnancy. The availability of residential environmental media and extensive survey data provided enhanced understanding of Pb exposure during pregnancy and early life.


Assuntos
Exposição Ambiental , Chumbo , Criança , Humanos , Feminino , Gravidez , Pré-Escolar , Chumbo/análise , Exposição Ambiental/análise , Gestantes , Inquéritos Nutricionais , Exposição Materna , Poeira/análise
6.
Toxicol Sci ; 167(2): 347-359, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252107

RESUMO

Biotransformation rates extrapolated from in vitro data are used increasingly in human physiologically based pharmacokinetic (PBPK) models. This practice requires use of scaling factors, including microsomal content (mg of microsomal protein/g liver, MPPGL), enzyme specific content, and liver mass as a fraction of body weight (FVL). Previous analyses indicated that scaling factor variability impacts pharmacokinetic (PK) outcomes used in adult population dose-response studies. This analysis was extended to pediatric populations because large inter-individual differences in enzyme ontogeny likely would further contribute to scaling factor variability. An adult bromodichloromethane (BDCM) model (Kenyon, E. M., Eklund, C., Leavens, T. L., and Pegram, R. A. (2016a). Development and application of a human PBPK model for bromodichloromethane (BDCM) to investigate impacts of multi-route exposure. J. Appl. Toxicol. 36, 1095-1111) was re-parameterized for neonates, infants, and toddlers. Monte Carlo analysis was used to assess the impact of pediatric scaling factor variation on model-derived PK outcomes compared with adult findings. BDCM dose metrics were estimated following a single 0.05-liter drink of water or a 20-min bath, under typical (5 µg/l) and plausible higher (20 µg/l) BDCM concentrations. MPPGL, CYP2E1, and FVL values reflected the distribution of reported pediatric population values. The impact of scaling factor variability on PK outcome variation was different for each exposure scenario, but similar for each BDCM water concentration. The higher CYP2E1 expression variability during early childhood was reflected in greater variability in predicted PK outcomes in younger age groups, particularly for the oral exposure route. Sensitivity analysis confirmed the most influential parameter for this variability was CYP2E1, particularly in neonates. These findings demonstrate the importance of age-dependent scaling factor variation used for in vitro to in vivo extrapolation of biotransformation rates.


Assuntos
Exposição Ambiental/análise , Fígado/efeitos dos fármacos , Modelos Biológicos , Poluentes Químicos da Água/farmacocinética , Biotransformação , Peso Corporal/fisiologia , Pré-Escolar , Exposição Ambiental/efeitos adversos , Humanos , Lactente , Recém-Nascido , Fígado/metabolismo , Fígado/patologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/patologia , Método de Monte Carlo , Tamanho do Órgão/fisiologia , Distribuição Tecidual , Trialometanos/farmacocinética
7.
Environ Health Perspect ; 126(1): 017011, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29373863

RESUMO

BACKGROUND: The increasing size and frequency of wildland fires are leading to greater potential for cardiopulmonary disease and cancer in exposed populations; however, little is known about how the types of fuel and combustion phases affect these adverse outcomes. OBJECTIVES: We evaluated the mutagenicity and lung toxicity of particulate matter (PM) from flaming vs. smoldering phases of five biomass fuels, and compared results by equal mass or emission factors (EFs) derived from amount of fuel consumed. METHODS: A quartz-tube furnace coupled to a multistage cryotrap was employed to collect smoke condensate from flaming and smoldering combustion of red oak, peat, pine needles, pine, and eucalyptus. Samples were analyzed chemically and assessed for acute lung toxicity in mice and mutagenicity in Salmonella. RESULTS: The average combustion efficiency was 73 and 98% for the smoldering and flaming phases, respectively. On an equal mass basis, PM from eucalyptus and peat burned under flaming conditions induced significant lung toxicity potencies (neutrophil/mass of PM) compared to smoldering PM, whereas high levels of mutagenicity potencies were observed for flaming pine and peat PM compared to smoldering PM. When effects were adjusted for EF, the smoldering eucalyptus PM had the highest lung toxicity EF (neutrophil/mass of fuel burned), whereas smoldering pine and pine needles had the highest mutagenicity EF. These latter values were approximately 5, 10, and 30 times greater than those reported for open burning of agricultural plastic, woodburning cookstoves, and some municipal waste combustors, respectively. CONCLUSIONS: PM from different fuels and combustion phases have appreciable differences in lung toxic and mutagenic potency, and on a mass basis, flaming samples are more active, whereas smoldering samples have greater effect when EFs are taken into account. Knowledge of the differential toxicity of biomass emissions will contribute to more accurate hazard assessment of biomass smoke exposures. https://doi.org/10.1289/EHP2200.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Biomassa , Material Particulado/efeitos adversos , Incêndios Florestais , Poluentes Atmosféricos/análise , Animais , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Feminino , Pulmão/patologia , Camundongos , Testes de Mutagenicidade/métodos , Material Particulado/análise , Salmonella/genética , Fumaça/efeitos adversos , Fumaça/análise
8.
Energy Fuels ; 31(10)2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32461712

RESUMO

The present study examines the effects of fuel [an ultralow sulfur diesel (ULSD) versus a 20% v/v soy-based biodiesel-80% v/v petroleum blend (B20)], temperature, load, vehicle, driving cycle, and active regeneration technology on gas- and particle-phase carbon emissions from light and medium heavy-duty diesel vehicles (L/MHDDV). The study is performed using chassis dynamometer facilities that support low-temperature operation (-6.7 °C versus 21.7 °C) and heavy loads up to 12 000 kg. Organic and elemental carbon (OC-EC) composition of aerosol particles is determined using a thermal-optical technique. Gas- and particle-phase semivolatile organic compound (SVOC) emissions collected using traditional filter and polyurethane foam sampling media are analyzed using advanced gas chromatograpy/mass spectrometry methods. Study-wide OC and EC emissions are 0.735 and 0.733 mg/km, on average. The emissions factors for diesel vehicles vary widely, and use of a catalyzed diesel particle filter (CDPF) device generally mutes the carbon particle emissions in the exhaust, which contains ~90% w/w gas-phase matter. Interestingly, replacing ULSD with B20 did not significantly influence SVOC emissions, for which sums range from 0.030 to 9.4 mg/km for the L/MHDDVs. However, both low temperature and vehicle cold-starts significantly increase SVOCs in the exhaust. Real-time particle measurements indicate vehicle regeneration technology did influence emissions, although regeneration effects went unresolved using bulk chemistry techniques. A multistudy comparison of the toxic particle-phase polycyclic aromatic hydrocarbons (PAHs; molecular weight (MW) ≥ 252 amu) in diesel exhaust indicates emission factors that span up to 8 orders of magnitude over the past several decades. This study observes conditions under which PAH compounds with MW ≥ 252 amu appear in diesel particles downstream of the CDPF and can even reach low-end concentrations reported earlier for much larger HDDVs with poorly controlled exhaust streams. This rare observation suggests that analysis of PAHs in particles emitted from modern L/MHDDVs may be more complex than recognized previously.

9.
FEMS Microbiol Ecol ; 91(12)2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26454066

RESUMO

Populations of Vibrio parahaemolyticus in the environment can be influenced by numerous factors. We assessed the correlation of total (tl+) and potentially virulent (tdh+) V. parahaemolyticus in water with three harmful algal bloom (HAB) genera (Pseudo-nitzschia, Alexandrium and Dinophysis), the abundance of diatoms and dinoflagellates, chlorophyll-a and temperature, salinity and macronutrients at five sites in Washington State from 2008-2009. The variability in V. parahaemolyticus density was explained predominantly by strong seasonal trends where maximum densities occurred in June, 2 months prior to the highest seasonal water temperature. In spite of large geographic differences in temperature, salinity and nutrients, there was little evidence of corresponding differences in V. parahaemolyticus density. In addition, there was no evident relationship between V. parahaemolyticus and indices of HAB genera, perhaps due to a lack of significant HAB events during the sampling period. The only nutrient significantly associated with V. parahaemolyticus density after accounting for the seasonal trend was silicate. This negative relationship may be caused by a shift in cell wall structure for some diatom species to a chitinous substrate preferred by V. parahaemolyticus. Results from our study differ from those in other regions corroborating previous findings that environmental factors that trigger vibrio and HAB events may differ depending on geographic locations. Therefore caution should be used when applying results from one region to another.


Assuntos
Proliferação Nociva de Algas , Fitoplâncton/isolamento & purificação , Água do Mar/microbiologia , Vibrioses/epidemiologia , Vibrio parahaemolyticus/isolamento & purificação , Microbiologia da Água , Animais , Diatomáceas/isolamento & purificação , Diatomáceas/microbiologia , Dinoflagellida/química , Dinoflagellida/microbiologia , Humanos , Ácido Caínico/análogos & derivados , Ácido Caínico/análise , Ostreidae/microbiologia , Fitoplâncton/patogenicidade , Salinidade , Estações do Ano , Água do Mar/química , Silicatos/análise , Silicatos/química , Temperatura , Vibrio parahaemolyticus/patogenicidade , Washington/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA