Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Rev ; 102(1): 455-510, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34541899

RESUMO

Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. Cancer is a multistep disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signaling in cancer in every step of disease progression. Rho GTPases contribute to tumor initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence, and cancer cell stemness. Rho GTPases play a major role in cell migration and in the metastatic process. They are also involved in interactions with the tumor microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias/tratamento farmacológico , Microambiente Tumoral/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Movimento Celular/fisiologia , Transformação Celular Neoplásica/imunologia , Humanos , Transdução de Sinais/genética
2.
Curr Opin Cell Biol ; 88: 102345, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479111

RESUMO

Cell migration plays a pivotal role in various biological processes including cancer dissemination and successful metastasis, where the role of mechanical signals is increasingly acknowledged. This review focuses on the intricate mechanisms through which cancer cells modulate their migratory strategies via organelle adaptations in response to the extracellular matrix (ECM). Specifically, the nucleus and mitochondria emerge as pivotal mediators in this process. These organelles serve as sensors, translating mechanical stimuli into rapid metabolic alterations that sustain cell migration. Importantly, prolonged exposure to such stimuli can induce transcriptional or epigenetic changes, ultimately enhancing metastatic traits. Deciphering the intricate interplay between ECM properties and organelle adaptations not only advances our understanding of cytoskeletal dynamics but also holds promise for the development of innovative anti-metastatic therapeutic strategies.


Assuntos
Matriz Extracelular , Neoplasias , Organelas , Animais , Humanos , Movimento Celular , Matriz Extracelular/metabolismo , Mecanotransdução Celular , Mitocôndrias/metabolismo , Metástase Neoplásica , Neoplasias/patologia , Neoplasias/metabolismo , Organelas/metabolismo
3.
Nat Commun ; 14(1): 2740, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217519

RESUMO

Cell migration is crucial for cancer dissemination. We find that AMP-activated protein kinase (AMPK) controls cell migration by acting as an adhesion sensing molecular hub. In 3-dimensional matrices, fast-migrating amoeboid cancer cells exert low adhesion/low traction linked to low ATP/AMP, leading to AMPK activation. In turn, AMPK plays a dual role controlling mitochondrial dynamics and cytoskeletal remodelling. High AMPK activity in low adhering migratory cells, induces mitochondrial fission, resulting in lower oxidative phosphorylation and lower mitochondrial ATP. Concurrently, AMPK inactivates Myosin Phosphatase, increasing Myosin II-dependent amoeboid migration. Reducing adhesion or mitochondrial fusion or activating AMPK induces efficient rounded-amoeboid migration. AMPK inhibition suppresses metastatic potential of amoeboid cancer cells in vivo, while a mitochondrial/AMPK-driven switch is observed in regions of human tumours where amoeboid cells are disseminating. We unveil how mitochondrial dynamics control cell migration and suggest that AMPK is a mechano-metabolic sensor linking energetics and the cytoskeleton.


Assuntos
Proteínas Quinases Ativadas por AMP , Dinâmica Mitocondrial , Neoplasias , Humanos , Trifosfato de Adenosina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adesão Celular , Movimento Celular/fisiologia , Miosina Tipo II/metabolismo , Fosforilação Oxidativa , Fosforilação
4.
iScience ; 24(9): 102976, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34485858

RESUMO

Melanoma is an aggressive skin cancer developing from melanocytes, frequently resulting in metastatic disease. Melanoma cells utilize amoeboid migration as mode of local invasion. Amoeboid invasion is characterized by rounded cell morphology and high actomyosin contractility driven by Rho GTPase signalling. Migrastatic drugs targeting actin polymerization and contractility are therefore a promising treatment option for metastatic melanoma. To predict amoeboid invasion and metastatic potential, biomarkers functionally linked to contractility pathways are needed. The glycoprotein podoplanin drives actomyosin contractility in lymphoid fibroblasts and is overexpressed in many cancers. We show that podoplanin enhances amoeboid invasion in melanoma. Podoplanin expression in murine melanoma drives rounded cell morphology, increasing motility, and invasion in vivo. Podoplanin expression is increased in a subset of dedifferentiated human melanoma, and in vitro is sufficient to upregulate melanoma-associated marker Pou3f2/Brn2. Together, our data define podoplanin as a functional biomarker for dedifferentiated invasive melanoma and a promising migrastatic therapeutic target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA