Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Pharmacol Res ; 189: 106691, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773709

RESUMO

BACKGROUND: Mast cells are initiators and main effectors of allergic inflammation, together with eosinophils, with whom they can interact in a physical and soluble cross-talk with marked pro-inflammatory features, the Allergic Effector Unit. The pro-resolution role of mast cells, alone or in co-culture with eosinophils, has not been characterized yet. OBJECTIVES: We aimed to investigate select pro-resolution pathways in mast cells in vitro and in vivo in allergic inflammation. METHODS: In vitro, we employed human and murine mast cells and analyzed release of resolvin D1 and expression of 15-lipoxygenase after IgE-mediated activation. We performed co-culture of IgE-activated mast cells with peripheral blood eosinophils and investigated 15-lipoxygenase expression and Resolvin D1 release. In vivo, we performed Ovalbumin/Alum and Ovalbumin/S. aureus enterotoxin B allergic peritonitis model in Wild Type mice following a MC "overshoot" protocol. RESULTS: We found that IgE-activated mast cells release significant amounts of resolvin D1 30 min after activation, while 15-lipoxygenase expression remained unchanged. Resolvin D1 release was found to be decreased in IgE-activated mast cells co-cultured with peripheral blood eosinophils for 30 min In vivo, mast cell-overshoot mice exhibited a trend of reduced inflammation, together with increased peritoneal resolvin D1 release. CONCLUSIONS: Mast cells can actively contribute to resolution of allergic inflammation by releasing resolvin D1.


Assuntos
Mastócitos , Staphylococcus aureus , Camundongos , Humanos , Animais , Mastócitos/metabolismo , Ovalbumina/metabolismo , Staphylococcus aureus/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Inflamação/metabolismo , Imunoglobulina E
2.
Clin Exp Immunol ; 209(1): 72-82, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35467728

RESUMO

Eosinophils are innate immune cells typically associated with allergic and parasitic diseases. However, in recent years, eosinophils have also been ascribed a role in keeping homeostasis and in fighting several infectious diseases. Indeed, these cells circulate as mature cells in the blood and can be quickly recruited to the infected tissue. Moreover, eosinophils have all the necessary cellular equipment such as pattern recognition receptors (PRRs), pro-inflammatory cytokines, anti-bacterial proteins, and DNA traps to fight pathogens and promote an efficient immune response. This review summarizes some of the updated information on the role of eosinophils' direct and indirect mediated interactions with pathogens.


Assuntos
Infecções Bacterianas , Eosinófilos , Micoses , Viroses , Infecções Bacterianas/imunologia , Citocinas/metabolismo , Eosinófilos/imunologia , Humanos , Imunidade Inata , Micoses/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Viroses/imunologia
3.
Mol Pharmacol ; 87(1): 64-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25324049

RESUMO

Glucocorticoids, also known as corticosteroids, induce effector gene transcription as a part of their anti-inflammatory mechanisms of action. Such genomic effects can be significantly enhanced by long-acting ß2-adrenoceptor agonists (LABAs) and may contribute to the clinical superiority of inhaled corticosteroid (ICS)/LABA combinations in asthma and chronic obstructive pulmonary disease (COPD) over ICSs alone. Using models of cAMP- and glucocorticoid-induced transcription in human bronchial epithelial BEAS-2B cells, we show that combining inhibitors of phosphodiesterase (PDE) 3 and PDE4 provides greater benefits compared with inhibiting either PDE alone. In respect to cAMP-dependent transcription, inhibitors of PDE3 (siguazodan, cilostazol) and PDE4 (rolipram, GSK256066, roflumilast N-oxide) each sensitized to the LABA, formoterol. This effect was magnified by dual PDE3 and PDE4 inhibition. Siguazodan plus rolipram was also more effective at inducing cAMP-dependent transcription than either inhibitor alone. Conversely, the concentration-response curve describing the enhancement of dexamethasone-induced, glucocorticoid response element-dependent transcription by formoterol was displaced to the left by PDE4, but not PDE3, inhibition. Overall, similar effects were described for bona fide genes, including RGS2, CD200, and CRISPLD2. Importantly, the combination of siguazodan plus rolipram prolonged the duration of gene expression induced by formoterol, dexamethasone, or dexamethasone plus formoterol. This was most apparent for RGS2, a bronchoprotective gene that may also reduce the proinflammatory effects of constrictor mediators. Collectively, these data provide a rationale for the use of PDE3 and PDE4 inhibitors in the treatment of COPD and asthma where they may enhance, sensitize, and prolong the effects of LABA/ICS combination therapies.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Glucocorticoides/farmacologia , Inibidores da Fosfodiesterase 3/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Sistema Respiratório/efeitos dos fármacos , Linhagem Celular , Sinergismo Farmacológico , Quimioterapia Combinada , Células Epiteliais/efeitos dos fármacos , Etanolaminas/farmacologia , Fumarato de Formoterol , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema Respiratório/citologia , Transcrição Gênica/efeitos dos fármacos
4.
J Pharmacol Exp Ther ; 348(1): 12-24, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163441

RESUMO

In asthma and chronic obstructive pulmonary disease (COPD) multiple mediators act on Gαq-linked G-protein-coupled receptors (GPCRs) to cause bronchoconstriction. However, acting on the airway epithelium, such mediators may also elicit inflammatory responses. In human bronchial epithelial BEAS-2B cells (bronchial epithelium + adenovirus 12-SV40 hybrid), regulator of G-protein signaling (RGS) 2 mRNA and protein were synergistically induced in response to combinations of long-acting ß2-adrenoceptor agonist (LABA) (salmeterol, formoterol) plus glucocorticoid (dexamethasone, fluticasone propionate, budesonide). Equivalent responses occurred in primary human bronchial epithelial cells. Concentrations of glucocorticoid plus LABA required to induce RGS2 expression in BEAS-2B cells were consistent with the levels achieved therapeutically in the lungs. As RGS2 is a GTPase-activating protein that switches off Gαq, intracellular free calcium ([Ca(2+)]i) flux was used as a surrogate of responses induced by histamine, methacholine, and the thromboxane receptor agonist U46619 [(Z)-7-[(1S,4R,5R,6S)-5-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid]. This was significantly attenuated by salmeterol plus dexamethasone pretreatment, or RGS2 overexpression, and the protective effect of salmeterol plus dexamethasone was abolished by RGS2 RNA silencing. Although methacholine and U46619 induced interleukin-8 (IL-8) release and this was inhibited by RGS2 overexpression, the repression of U46619-induced IL-8 release by salmeterol plus dexamethasone was unaffected by RGS2 knockdown. Given a role for Gαq-mediated pathways in inducing IL-8 release, we propose that RGS2 acts redundantly with other effector processes to repress IL-8 expression. Thus, RGS2 expression is a novel effector mechanism in the airway epithelium that is induced by glucocorticoid/LABA combinations. This could contribute to the efficacy of glucocorticoid/LABA combinations in asthma and COPD.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/administração & dosagem , Proteínas RGS/genética , Mucosa Respiratória/metabolismo , Combinação de Medicamentos , Células Epiteliais/efeitos dos fármacos , Humanos , Proteínas RGS/biossíntese , Proteínas RGS/fisiologia , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Fatores de Tempo
5.
Nucleic Acids Res ; 37(19): 6491-502, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19700773

RESUMO

Pif-1 proteins are 5'-->3' superfamily 1 (SF1) helicases that in yeast have roles in the maintenance of mitochondrial and nuclear genome stability. The functions and activities of the human enzyme (hPif1) are unclear, but here we describe its DNA binding and DNA remodeling activities. We demonstrate that hPif1 specifically recognizes and unwinds DNA structures resembling putative stalled replication forks. Notably, the enzyme requires both arms of the replication fork-like structure to initiate efficient unwinding of the putative leading replication strand of such substrates. This DNA structure-specific mode of initiation of unwinding is intrinsic to the conserved core helicase domain (hPifHD) that also possesses a strand annealing activity as has been demonstrated for the RecQ family of helicases. The result of hPif1 helicase action at stalled DNA replication forks would generate free 3' ends and ssDNA that could potentially be used to assist replication restart in conjunction with its strand annealing activity.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA/metabolismo , DNA/química , DNA Helicases/química , DNA de Cadeia Simples/metabolismo , Humanos , Estrutura Terciária de Proteína
6.
Artigo em Inglês | MEDLINE | ID: mdl-30305828

RESUMO

BACKGROUND: Asthma exacerbations are associated with the recruitment of neutrophils to the lungs. These cells release proteases and mediators, many of which act at G protein-coupled receptors (GPCRs) that couple via Gq to promote bronchoconstriction and inflammation. Common asthma therapeutics up-regulate expression of the regulator of G protein signalling (RGS), RGS2. As RGS2 reduces signaling from Gq-coupled GPCRs, we have defined role(s) for this GTPase-activating protein in an acute neutrophilic model of lung inflammation. METHODS: Wild type and Rgs2 -/- C57Bl6 mice were exposed to nebulized lipopolysaccharide (LPS). Lung function (respiratory system resistance and compliance) was measured using a SCIREQ flexivent small animal ventilator. Lung inflammation was assessed by histochemistry, cell counting and by cytokine and chemokine expression in bronchoalveolar lavage (BAL) fluid. RESULTS: Lipopolysaccharide inhalation induced transient airways hyperreactivity (AHR) and neutrophilic lung inflammation. While AHR and inflammation was greatest 3 h post-LPS exposure, BAL neutrophils persisted for 24 h. At 3 h post-LPS inhalation, multiple inflammatory cytokines (CSF2, CSF3, IL6, TNF) and chemokines (CCL3, CCL4, CXCL1, CXCL2) were highly expressed in the BAL fluid, prior to declining by 24 h. Compared to wild type counterparts, Rgs2 -/- mice developed significantly greater airflow resistance in response to inhaled methacholine (MCh) at 3 h post-LPS exposure. At 24 h post-LPS exposure, when lung function was recovering in the wild type animals, MCh-induced resistance was increased, and compliance decreased, in Rgs2 -/- mice. Thus, Rgs2 -/- mice show AHR and stiffer lungs 24 h post-LPS exposure. Histological markers of inflammation, total and differential cell counts, and major cytokine and chemokine expression in BAL fluid were similar between wild type and Rgs2 -/- mice. However, 3 and 24 h post-LPS exposure, IL12B expression was significantly elevated in BAL fluid from Rgs2 -/- mice compared to wild type animals. CONCLUSIONS: While Rgs2 is bronchoprotective in acute neutrophilic inflammation, no clear anti-inflammatory effect was apparent. Nevertheless, elevated IL12B expression in Rgs2 -/- animals raises the possibility that RGS2 could dampen Th1 responses. These findings indicate that up-regulation of RGS2, as occurs in response to inhaled corticosteroids and long-acting ß2-adrenoceptor agonists, may be beneficial in acute neutrophilic exacerbations of airway disease, including asthma.

7.
PLoS One ; 12(1): e0170269, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107494

RESUMO

The GTPase-accelerating protein, regulator of G-protein signalling 2 (RGS2) reduces signalling from G-protein-coupled receptors (GPCRs) that signal via Gαq. In humans, RGS2 expression is up-regulated by inhaled corticosteroids (ICSs) and long-acting ß2-adrenoceptor agonists (LABAs) such that synergy is produced in combination. This may contribute to the superior clinical efficacy of ICS/LABA therapy in asthma relative to ICS alone. In a murine model of house dust mite (HDM)-induced airways inflammation, three weeks of intranasal HDM (25 µg, 3×/week) reduced lung function and induced granulocytic airways inflammation. Compared to wild type animals, Rgs2-/- mice showed airways hyperresponsiveness (increased airways resistance and reduced compliance). While HDM increased pulmonary inflammation observed on hematoxylin and eosin-stained sections, there was no difference between wild type and Rgs2-/- animals. HDM-induced mucus hypersecretion was also unaffected by RGS2 deficiency. However, inflammatory cell counts in the bronchoalveolar lavage fluid of Rgs2-/- animals were significantly increased (57%) compared to wild type animals and this correlated with increased granulocyte (neutrophil and eosinophil) numbers. Likewise, cytokine and chemokine (IL4, IL17, IL5, LIF, IL6, CSF3, CXCLl, CXCL10 and CXCL11) release was increased by HDM exposure. Compared to wild type, Rgs2-/- animals showed a trend towards increased expression for many cytokines/chemokines, with CCL3, CCL11, CXCL9 and CXCL10 being significantly enhanced. As RGS2 expression was unaffected by HDM exposure, these data indicate that RGS2 exerts tonic bronchoprotection in HDM-induced airways inflammation. Modest anti-inflammatory and anti-remodelling roles for RGS2 are also suggested. If translatable to humans, therapies that maximize RGS2 expression may prove advantageous.


Assuntos
Bronquite/fisiopatologia , Modelos Animais de Doenças , Pneumonia/fisiopatologia , Pyroglyphidae/imunologia , Proteínas RGS/fisiologia , Animais , Bronquite/imunologia , Líquido da Lavagem Broncoalveolar , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia/imunologia , Proteínas RGS/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA