Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Electron Mater ; 5(2): 1313, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36877495

RESUMO

[This corrects the article DOI: 10.1021/acsaelm.2c00979.].

2.
J Am Chem Soc ; 134(39): 16178-87, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22938058

RESUMO

Molybdenum oxide is used as a low-resistance anode interfacial layer in applications such as organic light emitting diodes and organic photovoltaics. However, little is known about the correlation between its stoichiometry and electronic properties, such as work function and occupied gap states. In addition, despite the fact that the knowledge of the exact oxide stoichiometry is of paramount importance, few studies have appeared in the literature discussing how this stoichiometry can be controlled to permit the desirable modification of the oxide's electronic structure. This work aims to investigate the beneficial role of hydrogenation (the incorporation of hydrogen within the oxide lattice) versus oxygen vacancy formation in tuning the electronic structure of molybdenum oxides while maintaining their high work function. A large improvement in the operational characteristics of both polymer light emitting devices and bulk heterojunction solar cells incorporating hydrogenated Mo oxides as hole injection/extraction layers was achieved as a result of favorable energy level alignment at the metal oxide/organic interface and enhanced charge transport through the formation of a large density of gap states near the Fermi level.

3.
ACS Appl Mater Interfaces ; 14(26): 29993-29999, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35647869

RESUMO

Schottky diodes based on inexpensive materials that can be processed using simple manufacturing methods are of particular importance for the next generation of flexible electronics. Although a number of high-frequency n-type diodes and rectifiers have been demonstrated, the progress with p-type diodes is lagging behind, mainly due to the intrinsically low conductivities of existing p-type semiconducting materials that are compatible with low-temperature, flexible, substrate-friendly processes. Herein, we report on CuSCN Schottky diodes, where the semiconductor is processed from solution, featuring coplanar Al-Au nanogap electrodes (<15 nm), patterned via adhesion lithography. The abundant CuSCN material is doped with the molecular p-type dopant fluorofullerene C60F48 to improve the diode's operating characteristics. Rectifier circuits fabricated with the doped CuSCN/C60F48 diodes exhibit a 30-fold increase in the cutoff frequency as compared to pristine CuSCN diodes (from 140 kHz to 4 MHz), while they are able to deliver output voltages of >100 mV for a VIN = ±5 V at the commercially relevant frequency of 13.56 MHz. The enhanced diode and circuit performance is attributed to the improved charge transport across CuSCN induced by C60F48. The ensuing diode technology can be used in flexible complementary circuits targeting low-energy-budget applications for the emerging internet of things device ecosystem.

4.
Nat Commun ; 13(1): 3260, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672406

RESUMO

The massive deployment of fifth generation and internet of things technologies requires precise and high-throughput fabrication techniques for the mass production of radio frequency electronics. We use printable indium-gallium-zinc-oxide semiconductor in spontaneously formed self-aligned <10 nm nanogaps and flash-lamp annealing to demonstrate rapid manufacturing of nanogap Schottky diodes over arbitrary size substrates operating in 5 G frequencies. These diodes combine low junction capacitance with low turn-on voltage while exhibiting cut-off frequencies (intrinsic) of >100 GHz. Rectifier circuits constructed with these co-planar diodes can operate at ~47 GHz (extrinsic), making them the fastest large-area electronic devices demonstrated to date.

5.
Adv Mater ; 34(22): e2104654, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34611947

RESUMO

Hybrid devices based on a heterojunction between inorganic and organic semiconductors have offered a means to combine the advantages of both classes of materials in optoelectronic devices, but, in practice, the performance of such devices has often been disappointing. Here, it is demonstrated that charge generation in hybrid inorganic-organic heterojunctions consisting of copper thiocyanate (CuSCN) and a variety of molecular acceptors (ITIC, IT-4F, Y6, PC70 BM, C70 , C60 ) proceeds via emissive charge-transfer (CT) states analogous to those found at all-organic heterojunctions. Importantly, contrary to what has been observed at previous organic-inorganic heterojunctions, the dissociation of the CT-exciton and subsequent charge separation is efficient, allowing the fabrication of planar photovoltaic devices with very low non-radiative voltage losses (0.21 ±  0.02 V). It is shown that such low non-radiative recombination enables the fabrication of simple and cost-effective near-IR (NIR) detectors with extremely low dark current (4 pA cm-2 ) and noise spectral density (3 fA Hz-1/2 ) at no external bias, leading to specific detectivities at NIR wavelengths of just under 1013 Jones, close to the performance of commercial silicon photodetectors. It is believed that this work demonstrates the possibility for hybrid heterojunctions to exploit the unique properties of both inorganic and organic semiconductors for high-performance opto-electronic devices.

6.
ACS Appl Mater Interfaces ; 9(48): 41965-41972, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29172422

RESUMO

Adhesion lithography (a-Lith) is a versatile fabrication technique used to produce asymmetric coplanar electrodes separated by a <15 nm nanogap. Here, we use a-Lith to fabricate deep ultraviolet (DUV) photodetectors by combining coplanar asymmetric nanogap electrode architectures (Au/Al) with solution-processable wide-band-gap (3.5-3.9 eV) p-type semiconductor copper(I) thiocyanate (CuSCN). Because of the device's unique architecture, the detectors exhibit high responsivity (≈79 A W-1) and photosensitivity (≈720) when illuminated with a DUV-range (λpeak = 280 nm) light-emitting diode at 220 µW cm-2. Interestingly, the photosensitivity of the photodetectors remains fairly high (≈7) even at illuminating intensities down to 0.2 µW cm-2. The scalability of the a-Lith process combined with the unique properties of CuSCN paves the way to new forms of inexpensive, yet high-performance, photodetectors that can be manufactured on arbitrary substrate materials including plastic.

7.
Sci Rep ; 7(1): 17839, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259244

RESUMO

TiO2 has high chemical stability, strong catalytic activity and is an electron transport material in organic solar cells. However, the presence of trap states near the band edges of TiO2 arising from defects at grain boundaries significantly affects the efficiency of organic solar cells. To become an efficient electron transport material for organic photovoltaics and related devices, such as perovskite solar cells and photocatalytic devices, it is important to tailor its band edges via doping. Nitrogen p-type doping has attracted considerable attention in enhancing the photocatalytic efficiency of TiO2 under visible light irradiation while hydrogen n-type doping increases its electron conductivity. DFT calculations in TiO2 provide evidence that nitrogen and hydrogen can be incorporated in interstitial sites and possibly form NiHi, NiHO and NTiHi defects. The experimental results indicate that NiHi defects are most likely formed and these defects do not introduce deep level states. Furthermore, we show that the efficiency of P3HT:IC60BA-based organic photovoltaic devices is enhanced when using hydrogen-doping and nitrogen/hydrogen codoping of TiO2, both boosting the material n-type conductivity, with maximum power conversion efficiency reaching values of 6.51% and 6.58%, respectively, which are much higher than those of the cells with the as-deposited (4.87%) and nitrogen-doped TiO2 (4.46%).

8.
Lipids ; 50(12): 1259-71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26449236

RESUMO

The purpose of the study was to assess a fluorimetric assay for the determination of total phospholipase A(2) (PLA(2)) activity in biological samples introducing the innovation of immobilized substrates on crosslinked polymeric membranes. The immobilized C(12)-NBD-PtdCho, a fluorescent analogue of phosphatidylcholine, exhibited excellent stability for 3 months at 4 °C and was not desorbed in the aqueous reaction mixture during analysis. The limit of detection was 0.5 pmol FA (0.2 pg) and the linear part of the response curve extended from 1 up to 190 nmol FA/h/mL sample. The intra- and inter-day relative standard deviations (%RSD), were ≤6 and ≤9 %, respectively. Statistical comparison with other fluorescent methods showed excellent correlation and agreement. Semiempirical calculations showed a fair amount of electrostatic interaction between the NBD-labeled substrate and the crosslinked polyvinyl alcohol with the styryl pyridinium residues (PVA-SbQ) material, from the plane of which, the sn-2 acyl chain of the phospholipid stands out and is accessible by PLA(2). Atomic Force Microscopy revealed morphological alterations of the immobilized substrate after the reaction with PLA(2). Mass spectrometry showed that only C(12)-NBD-FA, the PLA(2 )hydrolysis product, was detected in the reaction mixture, indicating that PLA(2) recognizes PVA-SbQ/C(12)-NBD-PtdCho as a surface to perform catalysis.


Assuntos
4-Cloro-7-nitrobenzofurazano/análogos & derivados , Fosfatidilcolinas/metabolismo , Fosfolipases A2/metabolismo , Alvéolos Pulmonares/enzimologia , Mucosa Respiratória/enzimologia , 4-Cloro-7-nitrobenzofurazano/química , 4-Cloro-7-nitrobenzofurazano/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Estudos de Viabilidade , Corantes Fluorescentes/química , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Membranas Artificiais , Microscopia de Força Atômica , Fosfatidilcolinas/química , Fosfolipases A2/sangue , Projetos Piloto , Álcool de Polivinil/análogos & derivados , Álcool de Polivinil/química , Compostos de Piridínio/química , Reprodutibilidade dos Testes , Espectrometria de Fluorescência , Estereoisomerismo , Especificidade por Substrato , Sus scrofa
9.
ACS Appl Mater Interfaces ; 5(23): 12346-54, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24195694

RESUMO

Herein we introduce the all-organic triphenylsulfonium (TPS) salts cathode interfacial layers (CILs), deposited from their methanolic solution, as a new simple strategy for circumventing the use of unstable low work function metals and obtaining charge balance and high electroluminescence efficiency in polymer light-emitting diodes (PLEDs). In particular, we show that the incorporation of TPS-triflate or TPS-nonaflate at the polymer/Al interface improved substantially the luminous efficiency of the device (from 2.4 to 7.9 cd/A) and reduced the turn-on and operating voltage, whereas an up to 4-fold increase in brightness (∼11 250 cd/m(2) for TPS-triflate and ∼14 682 cd/m(2) for TPS-nonaflate compared to ∼3221 cd/m(2) for the reference device) was observed in poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-2,1',3-thiadiazole)] (F8BT)-based PLEDs. This was mainly attributed to the favorable decrease of the electron injection barrier, as derived from the open-circuit voltage (Voc) measurements, which was also assisted by the conduction of electrons through the triphenylsulfonium salt sites. Density functional theory calculations indicated that the total energy of the anionic (reduced) form of the salt, that is, upon placing an electron to its lowest unoccupied molecular orbital, is lower than its neutral state, rendering the TPS-salts stable upon electron transfer in the solid state. Finally, the morphology optimization of the TPS-salt interlayer through controlling the processing parameters was found to be critical for achieving efficient electron injection and transport at the respective interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA