Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 118(26): 265001, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28707924

RESUMO

In this Letter we present data from experiments on the National Spherical Torus Experiment Upgrade, where it is shown for the first time that small amounts of high pitch-angle beam ions can strongly suppress the counterpropagating global Alfvén eigenmodes (GAE). GAE have been implicated in the redistribution of fast ions and modification of the electron power balance in previous experiments on NSTX. The ability to predict the stability of Alfvén modes, and developing methods to control them, is important for fusion reactors like the International Tokamak Experimental Reactor, which are heated by a large population of nonthermal, super-Alfvénic ions consisting of fusion generated α's and beam ions injected for current profile control. We present a qualitative interpretation of these observations using an analytic model of the Doppler-shifted ion-cyclotron resonance drive responsible for GAE instability which has an important dependence on k_{⊥}ρ_{L}. A quantitative analysis of this data with the hym stability code predicts both the frequencies and instability of the GAE prior to, and suppression of the GAE after the injection of high pitch-angle beam ions.

2.
Rev Sci Instrum ; 93(9): 093528, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182482

RESUMO

A time domain algorithm has been developed to remove the vacuum pickup generated by both coil current (DC) and induced vessel current (AC) in real time from three dimensional (3D) magnetic diagnostic signals in the National Spherical Torus Experiment-Upgrade (NSTX-U) and DIII-D tokamaks. The possibility of detecting 3D plasma perturbations in real time is essential in modern and future tokamaks to avoid and control MHD instabilities. The presence of vacuum field pickup, due to toroidally asymmetric (3D) coils or to misalignment between sensors and axisymmetric (2D) coils, pollutes the measured plasma 3D field, making the detection of the magnetic field produced by the plasma challenging. Although the DC coupling between coils and sensors can be easily calculated and removed, the AC part is more difficult. An algorithm based on a layered low-pass filter approach for the AC compensation and its application for DIII-D and NSTX-U data is presented, showing that this method reduces the vacuum pickup to the noise level. Comparison of plasma response measurements with and without vacuum compensation shows that accurate mode locking detection and plasma response identification require precise AC and DC compensations.

3.
Phys Rev Lett ; 106(7): 075004, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21405523

RESUMO

The impact of collisionless, energy-independent, and energy-dependent collisionality models on the kinetic stability of the resistive wall mode is examined for high pressure plasmas in the National Spherical Torus Experiment. Future devices will have decreased collisionality, which previous stability models predict to be universally destabilizing. In contrast, in kinetic theory reduced ion-ion collisions are shown to lead to a significant stability increase when the plasma rotation frequency is in a stabilizing resonance with the ion precession drift frequency. When the plasma is in a reduced stability state with rotation in between resonances, collisionality will have little effect on stability.

4.
Phys Rev Lett ; 104(3): 035003, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20366652

RESUMO

Experimental observation of resistive wall mode (RWM) instability in the National Spherical Torus Experiment (NSTX) at plasma rotation levels intermediate to the ion precession drift and ion bounce frequencies suggests that low critical rotation threshold models are insufficient. Kinetic modifications to the ideal stability criterion yield a more complex relationship between plasma rotation and RWM stability. Good agreement is found between an experimental RWM instability at intermediate plasma rotation and the RWM marginal point calculated with kinetic effects included, by the MISK code. By self-similarly scaling the experimental plasma rotation profile and the collisionality in the calculation, resonances of the mode with the precession drift and bounce frequencies are explored. Experimentally, RWMs go unstable when the plasma rotation is between the stabilizing precession drift and bounce resonances.

5.
Phys Rev Lett ; 105(13): 135004, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21230781

RESUMO

We report observation of a new high performance regime in discharges in the National Spherical Torus Experiment, where the H mode edge "pedestal" temperature doubles and the energy confinement increases by 50%. The spontaneous transition is triggered by a large edge-localized mode, either natural or externally triggered by 3D fields. The transport barrier grows inward from the edge, with a doubling of both the pedestal pressure width and the spatial extent of steep radial electric field shear. The dynamics suggest that 3D fields could be applied to reduce edge transport in fusion devices.

6.
Phys Rev Lett ; 104(4): 045001, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20366719

RESUMO

The application of nonaxisymmetric magnetic fields is shown to destabilize edge-localized modes (ELMs) during otherwise ELM-free periods of discharges in the National Spherical Torus Experiment (NSTX). Profile analysis shows the applied fields increased the temperature and pressure gradients, decreasing edge stability. This robust effect was exploited for a new form of ELM control: the triggering of ELMs at will in high performance H mode plasmas enabled by lithium conditioning, yielding high time-averaged energy confinement with reduced core impurity density and radiated power.

7.
Phys Plasmas ; 24(5): 056101, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28435207

RESUMO

A model-based feedback system is presented enabling the simultaneous control of the stored energy through ßn and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained.

8.
Rev Sci Instrum ; 85(11): 11D859, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430272

RESUMO

The radiated-power-density diagnostic on the equatorial midplane for the NSTX-U tokamak will be upgraded to measure the radial structure of the photon emissivity profile with an improved radial resolution. This diagnostic will enhance the characterization and studies of power balance, impurity transport, and MHD. The layout and response expected of the new system is shown for different plasma conditions and impurity concentrations. The effect of toroidal rotation driving poloidal asymmetries in the core radiation from high-Z impurities is also addressed.

9.
Rev Sci Instrum ; 85(11): 11E801, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430366

RESUMO

Results from the operation of an electromagnetic valve, that does not incorporate ferromagnetic materials, are presented. Image currents induced on a conducting disc placed near a pancake solenoid cause it to move away from the solenoid and open the vacuum seal. A new and important design feature is the use of Lip Seals for the sliding piston. The pressure rise in the test chamber is measured directly using a fast time response Baratron gauge. The valve injects over 200 Torr l of nitrogen in less than 3 ms, which remains unchanged at moderate magnetic fields.

10.
Rev Sci Instrum ; 85(11): 11E807, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430372

RESUMO

This paper describes aspects of magnetic diagnostics for realtime control in National Spherical Torus Experiment-Upgrade (NSTX-U). The sensor arrangement on the upgraded center column is described. New analog and digital circuitry for processing the plasma current Rogowski data are presented. An improved algorithm for estimating the plasma vertical velocity for feedback control is presented.

11.
Rev Sci Instrum ; 85(11): 11D856, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430269

RESUMO

A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

12.
Rev Sci Instrum ; 83(10): 10D716, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126890

RESUMO

A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (q(peak) ≤ 15 MW/m(2)), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D(2) or CD(4) gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m(2), are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic "security" monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

13.
Rev Sci Instrum ; 82(10): 103502, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22047289

RESUMO

This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The measurements are based on three techniques: (1) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (2) the direct measurement of halo currents into specially instrument tiles, and (3) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peaking factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems are shown.

14.
Phys Rev Lett ; 103(7): 075001, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19792649

RESUMO

Reduction or elimination of edge localized modes (ELMs) while maintaining high confinement is essential for future fusion devices, e.g., the ITER. An ELM-free regime was recently obtained in the National Spherical Torus Experiment, following lithium (Li) evaporation onto the plasma-facing components. Edge stability calculations indicate that the pre-Li discharges were unstable to low-n peeling or ballooning modes, while broader pressure profiles stabilized the post-Li discharges. Normalized energy confinement increased by 50% post Li, with no sign of ELMs up to the global stability limit.

15.
Phys Rev Lett ; 99(24): 245003, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18233456

RESUMO

Oblate field-reversed configuration (FRC) plasmas are sustained for up to 350 micros, or approximately 15 poloidal flux-confinement times, in the magnetic reconnection experiment. The diamagnetic equilibrium is maintained in argon plasmas as a balance of an inward pinch and outward diffusion. Numerical and analytic models show that the observed stability is provided by a combination of plasma shaping, magnetic diffusion, and finite-Larmor radius effects. FRCs formed with lighter ions, which benefit less from these stabilizing effects, succumb to rapid instability and cannot be sustained.

16.
Phys Rev Lett ; 94(1): 015002, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15698090

RESUMO

Measurements of plasma flow damping have been made in the helically symmetric experiment using a biased electrode to impulsively spin the plasma. There are two time scales in the evolution of the plasma flow, for both the spin-up and relaxation. Compared to a configuration with the quasisymmetry broken, the flow in the quasisymmetric configuration rises more slowly and to a higher value at bias turn-on, and decays more slowly at bias turn-off. The decays of the flows are significantly faster than the neoclassical prediction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA