Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 348: 119200, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832295

RESUMO

Antarctica has been subject to widespread, long-term and on-going human activity since the establishment of permanent research stations became common in the 1950s. Equipment may become intentionally or inadvertently lost in Antarctic marine and terrestrial environments as a result of scientific research and associated support activities, but this has been poorly quantified to date. Here we report the quantity and nature of equipment lost by the UK's national operator in Antarctica, the British Antarctic Survey (BAS). Over the 15-year study period (2005-2019), 125 incidents of loss were reported, with c. 23 tonnes of equipment lost of which 18% by mass was considered hazardous. The geographical distribution of lost equipment was widespread across the BAS operational footprint. However, impacts are considered low compared to those associated with research station infrastructure establishment and operation. To reduce environmental impact overall, we recommend that, where possible, better use is made of existing research station capacity to facilitate field research, thereby reducing the need for construction of new infrastructure and the generation of associated impacts. Furthermore, to facilitate reporting on the state of the Antarctic environment, we recommend that national Antarctic programmes reinvigorate efforts to comply with Antarctic Treaty System requirements to actively record the locations of past activities and make available details of lost equipment. In a wider context, analogous reporting is also encouraged in other pristine areas subject to new research activities, including in other remote Earth environments and on extra-terrestrial bodies.


Assuntos
Meio Ambiente , Atividades Humanas , Humanos , Regiões Antárticas
2.
Biology (Basel) ; 11(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35205187

RESUMO

The importance of cold-water blue carbon as biological carbon pumps that sequester carbon into ocean sediments is now being realised. Most polar blue carbon research to date has focussed on deep water, yet the highest productivity is in the shallows. This study measured the functional biodiversity and carbon standing stock accumulated by shallow-water (<25 m) benthic assemblages on both hard and soft substrata on the Antarctic Peninsula (WAP, 67° S). Soft substrata benthic assemblages (391 ± 499 t C km-2) contained 60% less carbon than hard substrata benthic assemblages (648 ± 909). In situ observations of substrata by SCUBA divers provided estimates of 59% hard (4700 km) and 12% soft (960 km) substrata on seasonally ice-free shores of the Antarctic Peninsula, giving an estimate of 253,000 t C at 20 m depth, with a sequestration potential of ~4500 t C year-1. Currently, 54% of the shoreline is permanently ice covered and so climate-mediated ice loss along the Peninsula is predicted to more than double this carbon sink. The steep fjordic shorelines make these assemblages a globally important pathway to sequestration, acting as one of the few negative (mitigating) feedbacks to climate change. The proposed WAP marine protected area could safeguard this ecosystem service, helping to tackle the climate and biodiversity crises.

3.
Sci Total Environ ; 806(Pt 4): 150943, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655637

RESUMO

Physiological comparisons are fundamental to quantitative assessments of the capacity of species to persist within their current distribution and to predict their rates of redistribution in response to climate change. Yet, the degree to which physiological traits are conserved through evolutionary history may fundamentally constrain the capacity for species to adapt and shift their geographic range. Taxa that straddle major climate transitions provide the opportunity to test the mechanisms underlying evolutionary constraints and how such constraints may influence range shift predictions. Here we focus on two abundant and shallow water nacellid limpets which have representative species on either side of the Polar front. We test the thermal thresholds of the Southern Patagonian limpet, Nacella deaurata and show that its optimal temperatures for growth (4 °C), activity (-1.2 to -0.2 °C) and survival (1 to 8 °C) are mismatched to its currently experienced annual sea surface temperature range (5.9 to 10 °C). Comparisons with the congeneric Antarctic limpet, N. concinna, reveal an evolutionary constraint on N. deaurata physiology, with overlapping thermal capacities, suggesting that a cold climate legacy has been maintained through the evolution of these species. These physiological assessments predict that the South American range of N. deaurata will likely decline with continued warming. It is, however, one of the first species with demonstrated physiological capacity to successfully colonize the cold Southern Ocean. With the expected increase in opportunities for transport within high southern latitudes, N. deaurata has the potential to establish and drive ecological change within the shallow Southern Ocean.


Assuntos
Gastrópodes , Animais , Regiões Antárticas , Mudança Climática , Temperatura Baixa , Temperatura
4.
Sci Adv ; 8(47): eadd0720, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417533

RESUMO

Ocean mixing around Antarctica exerts key influences on glacier dynamics and ice shelf retreats, sea ice, and marine productivity, thus affecting global sea level and climate. The conventional paradigm is that this is dominated by winds, tides, and buoyancy forcing. Direct observations from the Antarctic Peninsula demonstrate that glacier calving triggers internal tsunamis, the breaking of which drives vigorous mixing. Being widespread and frequent, these internal tsunamis are at least comparable to winds, and much more important than tides, in driving regional shelf mixing. They are likely relevant everywhere that marine-terminating glaciers calve, including Greenland and across the Arctic. Calving frequency may change with higher ocean temperatures, suggesting possible shifts to internal tsunamigenesis and mixing in a warming climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA