Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artif Life ; 29(2): 153-167, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787448

RESUMO

Even when concepts similar to emergence have been used since antiquity, we lack an agreed definition. However, emergence has been identified as one of the main features of complex systems. Most would agree on the statement "life is complex." Thus understanding emergence and complexity should benefit the study of living systems. It can be said that life emerges from the interactions of complex molecules. But how useful is this to understanding living systems? Artificial Life (ALife) has been developed in recent decades to study life using a synthetic approach: Build it to understand it. ALife systems are not so complex, be they soft (simulations), hard (robots), or wet(protocells). Thus, we can aim at first understanding emergence in ALife, to then use this knowledge in biology. I argue that to understand emergence and life, it becomes useful to use information as a framework. In a general sense, I define emergence as information that is not present at one scale but present at another. This perspective avoids problems of studying emergence from a materialist framework and can also be useful in the study of self-organization and complexity.


Assuntos
Vida Artificial
2.
Entropy (Basel) ; 25(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36832621

RESUMO

Most models of complex systems have been homogeneous, i.e., all elements have the same properties (spatial, temporal, structural, functional). However, most natural systems are heterogeneous: few elements are more relevant, larger, stronger, or faster than others. In homogeneous systems, criticality-a balance between change and stability, order and chaos-is usually found for a very narrow region in the parameter space, close to a phase transition. Using random Boolean networks-a general model of discrete dynamical systems-we show that heterogeneity-in time, structure, and function-can broaden additively the parameter region where criticality is found. Moreover, parameter regions where antifragility is found are also increased with heterogeneity. However, maximum antifragility is found for particular parameters in homogeneous networks. Our work suggests that the "optimal" balance between homogeneity and heterogeneity is non-trivial, context-dependent, and in some cases, dynamic.

3.
Entropy (Basel) ; 23(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34945919

RESUMO

The accurate description of a complex process should take into account not only the interacting elements involved but also the scale of the description. Therefore, there can not be a single measure for describing the associated complexity of a process nor a single metric applicable in all scenarios. This article introduces a framework based on multiscale entropy to characterize the complexity associated with the most identifiable characteristic of songs: the melody. We are particularly interested in measuring the complexity of popular songs and identifying levels of complexity that statistically explain the listeners' preferences. We analyze the relationship between complexity and popularity using a database of popular songs and their relative position in a preferences ranking. There is a tendency toward a positive association between complexity and acceptance (success) of a song that is, however, not significant after adjusting for multiple testing.

4.
PLoS Comput Biol ; 15(11): e1007517, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31765382

RESUMO

Surveillance plays a crucial role in preventing emerging infectious diseases from becoming epidemic. In circumstances where it is possible to monitor the infection status of certain people, transport hubs, or hospitals, early detection of the disease allows interventions to be implemented before most of the damage can occur, or at least its impact can be mitigated. This paper addresses the question of which nodes we should select in a network of individuals susceptible to some infectious disease in order to minimize the number of casualties. By simulating disease outbreaks on a collection of empirical and synthetic networks we show that the best strategy depends on topological characteristics of the network. For highly modular or spatially embedded networks it is better to place the sentinels on nodes distributed across different regions. However, if the degree heterogeneity is high, then a strategy that targets network hubs is preferred. We further consider the consequences of having an incomplete sample of the network and demonstrate that the value of new information diminishes as more data is collected. Finally we find further marginal improvements using two heuristics informed by known results in graph theory that exploit the fragmented structure of sparse network data.


Assuntos
Epidemias/prevenção & controle , Vigilância de Evento Sentinela , Doenças Transmissíveis/epidemiologia , Simulação por Computador , Surtos de Doenças , Suscetibilidade a Doenças/epidemiologia , Humanos , Modelos Teóricos
5.
Artif Life ; 26(3): 391-408, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32697161

RESUMO

Self-organization can be broadly defined as the ability of a system to display ordered spatiotemporal patterns solely as the result of the interactions among the system components. Processes of this kind characterize both living and artificial systems, making self-organization a concept that is at the basis of several disciplines, from physics to biology and engineering. Placed at the frontiers between disciplines, artificial life (ALife) has heavily borrowed concepts and tools from the study of self-organization, providing mechanistic interpretations of lifelike phenomena as well as useful constructivist approaches to artificial system design. Despite its broad usage within ALife, the concept of self-organization has been often excessively stretched or misinterpreted, calling for a clarification that could help with tracing the borders between what can and cannot be considered self-organization. In this review, we discuss the fundamental aspects of self-organization and list the main usages within three primary ALife domains, namely "soft" (mathematical/computational modeling), "hard" (physical robots), and "wet" (chemical/biological systems) ALife. We also provide a classification to locate this research. Finally, we discuss the usefulness of self-organization and related concepts within ALife studies, point to perspectives and challenges for future research, and list open questions. We hope that this work will motivate discussions related to self-organization in ALife and related fields.


Assuntos
Modelos Biológicos , Origem da Vida
6.
Entropy (Basel) ; 22(9)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-33286756

RESUMO

Robustness and evolvability are essential properties to the evolution of biological networks. To determine if a biological network is robust and/or evolvable, it is required to compare its functions before and after mutations. However, this sometimes takes a high computational cost as the network size grows. Here, we develop a predictive method to estimate the robustness and evolvability of biological networks without an explicit comparison of functions. We measure antifragility in Boolean network models of biological systems and use this as the predictor. Antifragility occurs when a system benefits from external perturbations. By means of the differences of antifragility between the original and mutated biological networks, we train a convolutional neural network (CNN) and test it to classify the properties of robustness and evolvability. We found that our CNN model successfully classified the properties. Thus, we conclude that our antifragility measure can be used as a predictor of the robustness and evolvability of biological networks.

8.
Acta Biotheor ; 61(2): 203-22, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23456459

RESUMO

We extend the concept that life is an informational phenomenon, at every level of organisation, from molecules to the global ecological system. According to this thesis: (a) living is information processing, in which memory is maintained by both molecular states and ecological states as well as the more obvious nucleic acid coding; (b) this information processing has one overall function-to perpetuate itself; and (c) the processing method is filtration (cognition) of, and synthesis of, information at lower levels to appear at higher levels in complex systems (emergence). We show how information patterns, are united by the creation of mutual context, generating persistent consequences, to result in 'functional information'. This constructive process forms arbitrarily large complexes of information, the combined effects of which include the functions of life. Molecules and simple organisms have already been measured in terms of functional information content; we show how quantification may be extended to each level of organisation up to the ecological. In terms of a computer analogy, life is both the data and the program and its biochemical structure is the way the information is embodied. This idea supports the seamless integration of life at all scales with the physical universe. The innovation reported here is essentially to integrate these ideas, basing information on the 'general definition' of information, rather than simply the statistics of information, thereby explaining how functional information operates throughout life.


Assuntos
Processamento Eletrônico de Dados , Vida , Transdução de Sinais
9.
PLoS One ; 18(3): e0280487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928831

RESUMO

In contrast with robust systems that resist noise or fragile systems that break with noise, antifragility is defined as a property of complex systems that benefit from noise or disorder. Here we define and test a simple measure of antifragility for complex dynamical systems. In this work we use our antifragility measure to analyze real data from return prices in the stock and cryptocurrency markets. Our definition of antifragility is the product of the return price and a perturbation. We explore different types of perturbations that typically arise from within the system. Our results suggest that for both the stock market and the cryptocurrency market, the tendency among the 'top performers' is to be robust rather than antifragile. It would be important to explore other possible definitions of antifragility to understand its role in financial markets and in complex dynamical systems in general.

10.
Nat Commun ; 13(1): 1646, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347126

RESUMO

Virtually anything can be and is ranked; people, institutions, countries, words, genes. Rankings reduce complex systems to ordered lists, reflecting the ability of their elements to perform relevant functions, and are being used from socioeconomic policy to knowledge extraction. A century of research has found regularities when temporal rank data is aggregated. Far less is known, however, about how rankings change in time. Here we explore the dynamics of 30 rankings in natural, social, economic, and infrastructural systems, comprising millions of elements and timescales from minutes to centuries. We find that the flux of new elements determines the stability of a ranking: for high flux only the top of the list is stable, otherwise top and bottom are equally stable. We show that two basic mechanisms - displacement and replacement of elements - capture empirical ranking dynamics. The model uncovers two regimes of behavior; fast and large rank changes, or slow diffusion. Our results indicate that the balance between robustness and adaptability in ranked systems might be governed by simple random processes irrespective of system details.

11.
PLoS One ; 16(1): e0244326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33395415

RESUMO

Dealing with traffic congestion is one of the most pressing challenges for cities. Transport authorities have implemented several strategies to reduce traffic jams with varying degrees of success. The use of reversible lanes is a common approach to improve traffic congestion during rush hours. A reversible lane can change its direction during a time interval to the more congested direction. This strategy can improve traffic congestion in specific scenarios. Most reversible lanes in urban roads are fixed in time and number; however, traffic patterns in cities are highly variable and unpredictable due to this phenomenon's complex nature. Therefore, reversible lanes may not improve traffic flow under certain circumstances; moreover, they could worsen it because of traffic fluctuations. In this paper, we use cellular automata to model adaptive reversible lanes(aka dynamic reversible lanes). Adaptive reversible lanes can change their direction using real-time information to respond to traffic demand fluctuations. Using real traffic data, our model shows that adaptive reversible lanes can improve traffic flow up to 40% compared to conventional reversible lanes. Our results show that there are significant fluctuations in traffic flow even during rush hours, and thus cities would benefit from implementing adaptive reversible lanes.


Assuntos
Modelos Teóricos , Condução de Veículo , Cidades , Simulação por Computador , Planejamento Ambiental
12.
Front Robot AI ; 7: 41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33501209

RESUMO

Self-organization offers a promising approach for designing adaptive systems. Given the inherent complexity of most cyber-physical systems, adaptivity is desired, as predictability is limited. Here I summarize different concepts and approaches that can facilitate self-organization in cyber-physical systems, and thus be exploited for design. Then I mention real-world examples of systems where self-organization has managed to provide solutions that outperform classical approaches, in particular related to urban mobility. Finally, I identify when a centralized, distributed, or self-organizing control is more appropriate.

13.
PeerJ ; 8: e8533, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32095358

RESUMO

We review the concept of ecosystem resilience in its relation to ecosystem integrity from an information theory approach. We summarize the literature on the subject identifying three main narratives: ecosystem properties that enable them to be more resilient; ecosystem response to perturbations; and complexity. We also include original ideas with theoretical and quantitative developments with application examples. The main contribution is a new way to rethink resilience, that is mathematically formal and easy to evaluate heuristically in real-world applications: ecosystem antifragility. An ecosystem is antifragile if it benefits from environmental variability. Antifragility therefore goes beyond robustness or resilience because while resilient/robust systems are merely perturbation-resistant, antifragile structures not only withstand stress but also benefit from it.

14.
PLoS One ; 14(9): e0223048, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31568529

RESUMO

This study aims to analyze the level of anger developed by drivers in Mexico City and also understand the behavior that those drivers use to express that anger, using four different survey methods. The first focuses on personal information, the second Driving Anger Expression Inventory (DAX), the third refers to a shorten version of Driving Anger Scale (DAS) and the fourth being the Dula Dangerous Driving Index (DDDI). These have previously been applied and validated in several different countries. The questionnaires were filled out online by 626 drivers. Using the data collected through the online platform, it was possible to identify the kind of reactions volunteers displayed while driving. Also, it was possible to identify that people in Mexico City developed anger depending on their driving area. Our analyses shows that in the Adaptive/Constructive Expression subscale, males and females show a significant difference in their mean score, with women express their anger in a more constructive way than males.


Assuntos
Agressão/psicologia , Ira , Condução de Veículo/psicologia , Comportamento Perigoso , Adolescente , Adulto , Fatores Etários , Análise Fatorial , Feminino , Humanos , Masculino , México , Pessoa de Meia-Idade , Psicometria , Fatores Sexuais , Inquéritos e Questionários
17.
PLoS One ; 12(12): e0190100, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29287120

RESUMO

The equal headway instability-the fact that a configuration with regular time intervals between vehicles tends to be volatile-is a common regulation problem in public transportation systems. An unsatisfactory regulation results in low efficiency and possible collapses of the service. Computational simulations have shown that self-organizing methods can regulate the headway adaptively beyond the theoretical optimum. In this work, we develop a computer simulation for metro systems fed with real data from the Mexico City Metro to test the current regulatory method with a novel self-organizing approach. The current model considers overall system's data such as minimum and maximum waiting times at stations, while the self-organizing method regulates the headway in a decentralized manner using local information such as the passenger's inflow and the positions of neighboring trains. The simulation shows that the self-organizing method improves the performance over the current one as it adapts to environmental changes at the timescale they occur. The correlation between the simulation of the current model and empirical observations carried out in the Mexico City Metro provides a base to calculate the expected performance of the self-organizing method in case it is implemented in the real system. We also performed a pilot study at the Balderas station to regulate the alighting and boarding of passengers through guide signs on platforms. The analysis of empirical data shows a delay reduction of the waiting time of trains at stations. Finally, we provide recommendations to improve public transportation systems.


Assuntos
Simulação por Computador , Modelos Teóricos , Meios de Transporte , Humanos , México , Projetos Piloto , Setor Público
18.
19.
PLoS One ; 11(11): e0165381, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27855176

RESUMO

We apply game theory to a vehicular traffic model to study the effect of driver strategies on traffic flow. The resulting model inherits the realistic dynamics achieved by a two-lane traffic model and aims to incorporate phenomena caused by driver-driver interactions. To achieve this goal, a game-theoretic description of driver interaction was developed. This game-theoretic formalization allows one to model different lane-changing behaviors and to keep track of mobility performance. We simulate the evolution of cooperation, traffic flow, and mobility performance for different modeled behaviors. The analysis of these results indicates a mobility optimization process achieved by drivers' interactions.


Assuntos
Teoria dos Jogos , Modelos Teóricos , Algoritmos , Humanos
20.
Appl Netw Sci ; 1(1): 3, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30533495

RESUMO

One of the most significant current challenges in large-scale online social networks, is to establish a concise and coherent method aimed to collect and summarize data. Sampling the content of an Online Social Network (OSN) plays an important role as a knowledge discovery tool. It is becoming increasingly difficult to ignore the fact that current sampling methods must cope with a lack of a full sampling frame i.e., there is an imposed condition determined by a limited data access. In addition, another key aspect to take into account is the huge amount of data generated by users of social networking services such as Twitter, which is perhaps the most influential microblogging service producing approximately 500 million tweets per day. In this context, due to the size of Twitter, which is problematic to be measured, the analysis of the entire network is infeasible and sampling is unavoidable. In addition, we strongly believe that there is a clear need to develop a new methodology to collect information on social networks (social mining). In this regard, we think that this paper introduces a set of random strategies that could be considered as a reliable alternative to gather global trends on Twitter. It is important to note that this research pretends to show some initial ideas in how convenient are random walks to extract information or global trends. The main purpose of this study, is to propose a suitable methodology to carry out an efficient collecting process via three random strategies: Brownian, Illusion and Reservoir. These random strategies will be applied through a Metropolis-Hastings Random Walk (MHRW). We show that interesting insights can be obtained by sampling emerging global trends on Twitter. The study also offers some important insights providing descriptive statistics and graphical description from the preliminary experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA