RESUMO
Human cytomegalovirus (HCMV) infection is usually benign in healthy individuals but can cause life-threatening disease in those with compromised immune systems. Approved drugs available to treat HCMV disease, including ganciclovir, cidofovir, and foscarnet, have significant toxicities that limit their use in certain patient populations. LJP538 and LJP539 are human monoclonal antibodies that are being evaluated as immunoglobulin therapeutics. The antibodies target glycoproteins gB and the gH/gL/UL128/UL130/UL131a pentameric complex, respectively. Here we present an in vitro characterization of these antibodies. We show that LJP538 and LJP539 are more potent than a marketed immunoglobulin at inhibiting HCMV infection of various cell lines relevant to pathogenesis. We find that LJP538 and LJP539 are active against a panel of clinical isolates in vitro and demonstrate minor-to-moderate synergy in combination. Passage of HCMV in the presence of LJP538 or LJP539 alone resulted in resistance-associated mutations that mapped to the target genes. However, no loss of susceptibility to the combination of antibodies was observed for >400 days in culture. Finally, the binding regions of LJP538 and LJP539 are conserved among clinical isolates. Taken together, these data support the use of LJP538 and LJP539 in combination for clinical trials in HCMV patients.
Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais/farmacologia , Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/patogenicidade , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Antivirais/imunologia , Linhagem Celular , Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/prevenção & controle , Humanos , Glicoproteínas de Membrana/imunologia , Mutação , Proteínas do Envelope Viral/imunologia , Internalização do Vírus/efeitos dos fármacosRESUMO
A series of 4-(4-hydroxyphenyl)-6-phenylpyrimidin-2(1H)-ones were identified by HTS as inhibitors of CDC7. Molecular modeling and medicinal chemistry techniques were employed to explore the SAR for this series with a focus on removing potential metabolic liabilities and improving cellular potency.
Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Química Farmacêutica/métodos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Sítios de Ligação , Células CACO-2 , Desenho de Fármacos , Humanos , Indazóis/química , Concentração Inibidora 50 , Modelos Químicos , Conformação Molecular , Estrutura Molecular , Pirimidinonas/química , Relação Estrutura-AtividadeRESUMO
PURPOSE: Chk1 kinase is a critical regulator of both S and G(2)-M phase cell cycle checkpoints in response to DNA damage. This study aimed to evaluate the biochemical, cellular, and antitumor effects of a novel Chk1 inhibitor, CHIR124. EXPERIMENTAL DESIGN: CHIR-124 was evaluated for its ability to abrogate cell cycle checkpoints, to potentiate cytotoxicity, and to inhibit Chk1-mediated signaling induced by topoisomerase I poisons in human tumor cell line and xenograft models. RESULTS: CHIR-124 is a quinolone-based small molecule that is structurally unrelated to other known inhibitors of Chk1. It potently and selectively inhibits Chk1 in vitro (IC(50) = 0.0003 micromol/L). CHIR-124 interacts synergistically with topoisomerase poisons (e.g., camptothecin or SN-38) in causing growth inhibition in several p53-mutant solid tumor cell lines as determined by isobologram or response surface analysis. CHIR-124 abrogates the SN-38-induced S and G(2)-M checkpoints and potentiates apoptosis in MDA-MD-435 breast cancer cells. The abrogation of the G(2)-M checkpoint and induction of apoptosis by CHIR-124 are enhanced by the loss of p53. We have also shown that CHIR-124 treatment can restore the level of cdc25A protein, which is normally targeted by Chk1 for degradation following DNA damage, indicating that Chk1 signaling is suppressed in the presence of CHIR-124. Finally, in an orthotopic breast cancer xenograft model, CHIR-124 potentiates the growth inhibitory effects of irinotecan by abrogating the G(2)-M checkpoint and increasing tumor apoptosis. CONCLUSIONS: CHIR-124 is a novel and potent Chk1 inhibitor with promising antitumor activities when used in combination with topoisomerase I poisons.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sinergismo Farmacológico , Proteínas Quinases/metabolismo , Quinolinas/administração & dosagem , Quinuclidinas/administração & dosagem , Inibidores da Topoisomerase I , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos SCID , Modelos Químicos , Transplante de Neoplasias , Distribuição AleatóriaRESUMO
Antibody-drug conjugates (ADCs) are a novel modality that allows targeted delivery of potent therapeutic agents to the desired site. Herein we report our discovery of NAMPT inhibitors as a novel nonantimitotic payload for ADCs. The resulting anti-c-Kit conjugates (ADC-3 and ADC-4) demonstrated in vivo efficacy in the c-Kit positive gastrointestinal stromal tumor GIST-T1 xenograft model in a target-dependent manner.
RESUMO
Chk1 is a key regulator of the S and G2/M checkpoints and is activated following DNA damage by agents such as the topoisomerase I inhibitor camptothecin (CPT). It has been proposed that Chk1 inhibitors used in combination with such a DNA damaging agent to treat tumors would potentiate cytotoxicity and increase the therapeutic index, particularly in tumors lacking functional p53. The aim of this study was to determine whether gene expression analysis could be used to inform lead optimization of a novel series of Chk1 inhibitors. The candidate small-molecule Chk1 inhibitors were used in combination with CPT to identify potential markers of functional Chk1 inhibition, as well as resulting cell cycle progression, using cDNA-based microarrays. Differential expression of several of these putative marker genes was further validated by RT-PCR for use as a medium-throughput assay. In the presence of DNA damage, Chk1 inhibitors altered CPT-dependent effects on the expression of cell cycle and DNA repair genes in a manner consistent with a Chk1-specific mechanism of action. Furthermore, differential expression of selected marker genes, cyclin E2, EGR1, and DDIT3, was dose dependent for Chk1 inhibition. RT-PCR results for these genes following treatment with a panel of Chk1 inhibitors showed a strong correlation between marker gene response and the ability of each compound to abrogate cell cycle arrest in situ following CPT-induced DNA damage. These results demonstrate the utility of global expression analysis to identify surrogate markers, providing an alternative method for rapid compound characterization to support advancement decisions in early drug discovery.
Assuntos
Ciclo Celular/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Transcrição Gênica/efeitos dos fármacos , Biomarcadores/análise , Camptotecina/farmacologia , Ciclo Celular/genética , Quinase 1 do Ponto de Checagem , Dano ao DNA/genética , Relação Dose-Resposta a Droga , Humanos , Inibidores de Proteínas Quinases/química , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Antibody-drug conjugates (ADCs) are of great interest as targeted cancer therapeutics. Preparation of ADCs for early stage screening is constrained by purification and biochemical analysis techniques that necessitate burdensome quantities of antibody. Here we describe a method, developed for the maytansinoid class of ADCs, enabling parallel conjugation of antibodies in 96-well format. The method utilizes â¼ 100 µg of antibody per well and requires <5 µg of ADC for characterization. We demonstrate the capabilities of this system using model antibodies. We also provide multiple examples applying this method to early-stage screening of maytansinoid ADCs. The method can greatly increase the throughput with which candidate ADCs can be screened in cell-based assays, and may be more generally applicable to high-throughput preparation and screening of different types of protein conjugates.
Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Antineoplásicos/farmacologia , Imunoconjugados/farmacologia , Maitansina/farmacologia , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Antineoplásicos/imunologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Imunoconjugados/imunologia , Neoplasias/imunologiaRESUMO
A ligand-based 3D pharmacophore model for serine/threonine kinase CDC7 inhibition was created and successfully applied in the discovery of novel 2-(heteroaryl)-6,7-dihydrothieno[3,2-c]pyridin-4(5H)-ones. The pharmacophore model provided a hypothesis for lead generation missed by docking to a homology model. Medicinal chemistry exploration of the series revealed clear structure-activity relationships consistent with the pharmacophore model and pointed to further optimization opportunities.
RESUMO
The 3-benzimidazol-2-yl-1H-indazole scaffold was developed as an alternate scaffold for our receptor tyrosine kinase (RTK) inhibitor program. In exploring the SAR of this series, it was discovered that a subset of these compounds potently inhibit the enzyme c-ABL. The SAR of these compounds is described.
Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Indazóis/síntese química , Indazóis/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Células Cultivadas , Humanos , Relação Estrutura-AtividadeRESUMO
CHK-1 is one of the key enzymes regulating checkpoints in cellular growth cycles. Novel 4-(amino-alkylamino)-3-benzimidazole-quinolinones were prepared and assayed for their ability to inhibit CHK-1. These compounds are potent cell permeable CHK-1 inhibitors and showed synergistic effect with a DNA-damaging agent, camptothecin.