Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stem Cells ; 36(12): 1839-1850, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30247783

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin fragility disorder caused by mutations in the Col7a1 gene. Patients with RDEB suffer from recurrent erosions in skin and mucous membranes and have a high risk for developing cutaneous squamous cell carcinoma (cSCCs). TGFß signaling has been associated with fibrosis and malignancy in RDEB. In this study, the activation of TGFß signaling was demonstrated in col7a1-/- mice as early as a week after birth starting in the interdigital folds of the paws, accompanied by increased deposition of collagen fibrils and elevated dermal expression of matrix metalloproteinase (MMP)-9 and MMP-13. Furthermore, human cord blood-derived unrestricted somatic stem cells (USSCs) that we previously demonstrated to significantly improve wound healing and prolong the survival of col7a1-/- mice showed the ability to suppress TGFß signaling and MMP-9 and MMP-13 expression meanwhile upregulating anti-fibrotic TGFß3 and decorin. In parallel, we cocultured USSCs in a transwell with RDEB patient-derived fibroblasts, keratinocytes, and cSCC, respectively. The patient-derived cells were constitutively active for STAT, but not TGFß signaling. Moreover, the levels of MMP-9 and MMP-13 were significantly elevated in the patient derived-keratinocytes and cSCCs. Although USSC coculture did not inhibit STAT signaling, it significantly suppressed the secretion of MMP-9 and MMP-13, and interferon (IFN)-γ from RDEB patient-derived cells. Since epithelial expression of these MMPs is a biomarker of malignant transformation and correlates with the degree of tumor invasion, these results suggest a potential role for USSCs in mitigating epithelial malignancy, in addition to their anti-inflammatory and anti-fibrotic functions. Stem Cells 2018;36:1839-12.


Assuntos
Epidermólise Bolhosa Distrófica/genética , Sangue Fetal/metabolismo , Fibroblastos/metabolismo , Fibrose/metabolismo , Animais , Diferenciação Celular , Progressão da Doença , Epidermólise Bolhosa Distrófica/metabolismo , Humanos , Camundongos
2.
Stem Cells Transl Med ; 6(3): 992-1005, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28297566

RESUMO

Accumulation of myofibroblasts is a hallmark of renal fibrosis. A significant proportion of myofibroblasts has been reported to originate via endothelial-mesenchymal transition. We initially hypothesized that exposing myofibroblasts to the extract of endothelial progenitor cells (EPCs) could reverse this transition. Indeed, in vitro treatment of transforming growth factor-ß1 (TGF-ß1)-activated fibroblasts with EPC extract prevented expression of α-smooth muscle actin (α-SMA); however, it did not enhance expression of endothelial markers. In two distinct models of renal fibrosis-unilateral ureteral obstruction and chronic phase of folic acid-induced nephropathy-subcapsular injection of EPC extract to the kidney prevented and reversed accumulation of α-SMA-positive myofibroblasts and reduced fibrosis. Screening the composition of EPC extract for cytokines revealed that it is enriched in leukemia inhibitory factor (LIF) and vascular endothelial growth factor. Only LIF was capable of reducing fibroblast-to-myofibroblast transition of TGF-ß1-activated fibroblasts. In vivo subcapsular administration of LIF reduced the number of myofibroblasts and improved the density of peritubular capillaries; however, it did not reduce the degree of fibrosis. A receptor-independent ligand for the gp130/STAT3 pathway, hyper-interleukin-6 (hyper-IL-6), not only induced a robust downstream increase in pluripotency factors Nanog and c-Myc but also exhibited a powerful antifibrotic effect. In conclusion, EPC extract prevented and reversed fibroblast-to-myofibroblast transition and renal fibrosis. The component of EPC extract, LIF, was capable of preventing development of the contractile phenotype of activated fibroblasts but did not eliminate TGF-ß1-induced collagen synthesis in cultured fibroblasts and models of renal fibrosis, whereas a receptor-independent gp130/STAT3 agonist, hyper-IL-6, prevented fibrosis. In summary, these studies, through the evolution from EPC extract to LIF and then to hyper-IL-6, demonstrate the instructive role of microenvironmental cues and may provide in the future a facile strategy to prevent and reverse renal fibrosis. Stem Cells Translational Medicine 2017;6:992-1005.


Assuntos
Microambiente Celular , Rim/patologia , Células 3T3 , Animais , Microambiente Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Receptor gp130 de Citocina/metabolismo , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibrose , Interleucina-6/farmacologia , Fator Inibidor de Leucemia/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição/metabolismo , Obstrução Ureteral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA