Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 39(1): 199-212, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26228944

RESUMO

Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs.


Assuntos
Arecaceae/metabolismo , Metabolismo dos Carboidratos , Ciclo do Carbono , Isótopos de Carbono/metabolismo , Óleos de Plantas/metabolismo , Arecaceae/crescimento & desenvolvimento , Biomassa , Carboidratos , Carbono/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Indonésia , Lipídeos , Modelos Biológicos , Óleo de Palmeira , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Transpiração Vegetal/fisiologia
2.
J Exp Bot ; 67(9): 2603-15, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26970389

RESUMO

The issues of whether, where, and to what extent carbon isotopic fractionations occur during respiration affect interpretations of plant functions that are important to many disciplines across the natural sciences. Studies of carbon isotopic fractionation during dark respiration in C3 plants have repeatedly shown respired CO2 to be (13)C enriched relative to its bulk leaf sources and (13)C depleted relative to its bulk root sources. Furthermore, two studies showed respired CO2 to become progressively (13)C enriched during leaf ontogeny and (13)C depleted during root ontogeny in C3 legumes. As such data on C4 plants are scarce and contradictory, we investigated apparent respiratory fractionations of carbon and their possible causes in different organs of maize plants during early ontogeny. As in the C3 plants, leaf-respired CO2 was (13)C enriched whereas root-respired CO2 was (13)C depleted relative to their putative sources. In contrast to the findings for C3 plants, however, not only root- but also leaf-respired CO2 became more (13)C depleted during ontogeny. Leaf-respired CO2 was highly (13)C enriched just after light-dark transition but the enrichment rapidly decreased over time in darkness. We conclude that (i) although carbon isotopic fractionations in C4 maize and leguminous C3 crop roots are similar, increasing phosphoenolpyruvate-carboxylase activity during maize ontogeny could have produced the contrast between the progressive (13)C depletion of maize leaf-respired CO2 and (13)C enrichment of C3 leaf-respired CO2 over time, and (ii) in both maize and C3 leaves, highly (13)C enriched leaf-respired CO2 at light-to-dark transition and its rapid decrease during darkness, together with the observed decrease in leaf malate content, may be the result of a transient effect of light-enhanced dark respiration.


Assuntos
Dióxido de Carbono/metabolismo , Respiração Celular , Zea mays/crescimento & desenvolvimento , Isótopos de Carbono/metabolismo , Respiração Celular/fisiologia , Escuridão , Luz , Malatos/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Zea mays/metabolismo
3.
New Phytol ; 201(3): 751-769, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24251924

RESUMO

In general, leaves are (13) C-depleted compared with all other organs (e.g. roots, stem/trunk and fruits). Different hypotheses are formulated in the literature to explain this difference. One of these states that CO2 respired by leaves in the dark is (13) C-enriched compared with leaf organic matter, while it is (13) C-depleted in the case of root respiration. The opposite respiratory fractionation between leaves and roots was invoked as an explanation for the widespread between-organ isotopic differences. After summarizing the basics of photosynthetic and post-photosynthetic discrimination, we mainly review the recent findings on the isotopic composition of CO2 respired by leaves (autotrophic organs) and roots (heterotrophic organs) compared with respective plant material (i.e. apparent respiratory fractionation) as well as its metabolic origin. The potential impact of such fractionation on the isotopic signal of organic matter (OM) is discussed. Some perspectives for future studies are also proposed .


Assuntos
Escuridão , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Isótopos de Carbono , Respiração Celular , Fotossíntese
4.
Plant Physiol Biochem ; 187: 11-24, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35939984

RESUMO

Belonging to the Brassicaceae family, rocket (Eruca sativa (Mill.) Thell.), is considered to be a nitrate-accumulating leafy vegetable. Many studies show that light-emitting diode (LED) lights can be a suitable tool to decrease anti-nutritional compounds (e.g., nitrate (and enhance antioxidant and nutritional quality for phytochemical-rich vegetable production. The positive influence of humic acid on health-promoting compounds in different crops is also well documented. This study aimed to investigate the effects of supplemental LED lights of various spectral compositions, namely 25-100% red, 25-100% blue, and 100% white, as well as their combination with humic acid on the physiological and biochemical responses of rocket plants. ANOVA results showed that almost all the measured traits were significantly affected by LED and humic acid treatments. Generally, LED combined with humic acid improved the accumulation of nutritional compounds (e.g., polyphenols, flavonoid, ascorbic acid, carbohydrate, tannin), increased the activity of key enzymes involved in nitrogen metabolism (e.g., nitrate reductase, nitrite reductase, and glutamine synthetase), and lowered nitrate and ammonium concentrations. The results of principal component analysis indicated that the combination of LED lights, regardless of the spectra, with humic acid was the most effective treatment to enhance the nutritional value and activity of enzymes involved in nitrate assimilation. In sum, these findings may be used as a reference in rocket production for supplemental LED light optimization and its combination with humic acid.

5.
Phytochemistry ; 194: 113022, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34826793

RESUMO

Demands for peroxidases (POX)s with diverse physicochemical properties have steadily grown as more applications of POXs are demonstrated. Plants are among the best sources of versatile POXs, and plant biotechnology, as an agricultural hassle-free technology, promises to circumvent the limitations of natural resource exploitation and to address the demands. Following this trend, it was shown that POX production steadily increased during the 31-day subculture of Alkanna frigida (from Boraginaceae) callus on Murashige-Skoog medium containing 2,4-dichlorophenoxyacetic acid (10-6 M) and kinetin (10-5 M). The purified cationic enzyme (POXalf) maintained its optimal activity over pH 4-7 for 2 years. It was resistant to H2O2 high concentrations (IC50 = 543.7 mM) and showed high specific activity in the reaction with phenol (4320.5 AU mg-1 > 20-fold of HRP AU). Furthermore, the specificity constant ratio of guaiacol to phenol indicated a 100 times faster reaction of POXalf with guaiacol. However, in contrast to HRP, it had little effect on diazo derivatives of aniline and meta-diaminobenzene. Based on the resulting primary structure from the tandem mass analysis, the POXalf 3D structure was constructed via homology modelling. Despite the high topological similarity between the HRP and POXalf structures, there were important differences between the active site pockets that could explain the observed differences in the corresponding substrate spectra and the specific activities. Considering the dynamics of POXalf production, its inactivity towards IAA and its high affinity for guaiacol, POXalf may have associated roles with A. frigida cell wall construction and monolignol metabolism.


Assuntos
Boraginaceae , Peroxidase , Técnicas de Cultura de Células , Peróxido de Hidrogênio , Peroxidases
6.
Isotopes Environ Health Stud ; 57(1): 11-34, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32885670

RESUMO

The carbon isotopic composition (δ13C) of foliage is often used as proxy for plant performance. However, the effect of N O 3 - vs. N H 4 + supply on δ13C of leaf metabolites and respired CO2 is largely unknown. We supplied tobacco plants with a gradient of N O 3 - to N H 4 + concentration ratios and determined gas exchange variables, concentrations and δ13C of tricarboxylic acid (TCA) cycle intermediates, δ13C of dark-respired CO2, and activities of key enzymes nitrate reductase, malic enzyme and phosphoenolpyruvate carboxylase. Net assimilation rate, dry biomass and concentrations of organic acids and starch decreased along the gradient. In contrast, respiration rates, concentrations of intercellular CO2, soluble sugars and amino acids increased. As N O 3 - decreased, activities of all measured enzymes decreased. δ13C of CO2 and organic acids closely co-varied and were more positive under N O 3 - supply, suggesting organic acids as potential substrates for respiration. Together with estimates of intra-molecular 13C enrichment in malate, we conclude that a change in the anaplerotic reaction of the TCA cycle possibly contributes to 13C enrichment in organic acids and respired CO2 under N O 3 - supply. Thus, the effect of N O 3 - vs. N H 4 + on δ13C is highly relevant, particularly if δ13C of leaf metabolites or respiration is used as proxy for plant performance.


Assuntos
Compostos de Amônio/farmacologia , Dióxido de Carbono/metabolismo , Nicotiana/metabolismo , Nitratos/farmacologia , Folhas de Planta/metabolismo , Compostos de Amônio/metabolismo , Isótopos de Carbono/análise , Respiração Celular , Malatos/metabolismo , Nitratos/metabolismo , Folhas de Planta/efeitos dos fármacos , Amido/metabolismo , Nicotiana/efeitos dos fármacos
7.
Plant Cell Environ ; 33(6): 900-13, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20082670

RESUMO

While there is currently intense effort to examine the (13)C signal of CO(2) evolved in the dark, less is known on the isotope composition of day-respired CO(2). This lack of knowledge stems from technical difficulties to measure the pure respiratory isotopic signal: day respiration is mixed up with photorespiration, and there is no obvious way to separate photosynthetic fractionation (pure c(i)/c(a) effect) from respiratory effect (production of CO(2) with a different delta(13)C value from that of net-fixed CO(2)) at the ecosystem level. Here, we took advantage of new simple equations, and applied them to sunflower canopies grown under low and high [CO(2)]. We show that whole mesocosm-respired CO(2) is slightly (13)C depleted in the light at the mesocosm level (by 0.2-0.8 per thousand), while it is slightly (13)C enriched in darkness (by 1.5-3.2 per thousand). The turnover of the respiratory carbon pool after labelling appears similar in the light and in the dark, and accordingly, a hierarchical clustering analysis shows a close correlation between the (13)C abundance in day- and night-evolved CO(2). We conclude that the carbon source for respiration is similar in the dark and in the light, but the metabolic pathways associated with CO(2) production may change, thereby explaining the different (12)C/(13)C respiratory fractionations in the light and in the dark.


Assuntos
Ritmo Circadiano/fisiologia , Helianthus/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Respiração Celular , Análise por Conglomerados , Escuridão , Marcação por Isótopo , Luz , Especificidade de Órgãos , Fotossíntese , Fatores de Tempo
8.
New Phytol ; 181(2): 387-399, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19021866

RESUMO

Root respiration is a major contributor to soil CO2 efflux, and thus an important component of ecosystem respiration. But its metabolic origin, in relation to the carbon isotope composition (delta13C), remains poorly understood. Here, 13C analysis was conducted on CO2 and metabolites under typical conditions or under continuous darkness in French bean (Phaseolus vulgaris) roots. 13C contents were measured either under natural abundance or following pulse-chase labeling with 13C-enriched glucose or pyruvate, using isotope ratio mass spectrometer (IRMS) and nuclear magnetic resonance (NMR) techniques. In contrast to leaves, no relationship was found between the respiratory quotient and the delta13C of respired CO2, which stayed constant at a low value (c. -27.5 per thousand) under continuous darkness. With labeling experiments, it is shown that such a pattern is explained by the 13C-depleting effect of the pentose phosphate pathway; and the involvement of the Krebs cycle fueled by either the glycolytic input or the lipid/protein recycling. The anaplerotic phosphoenolpyruvate carboxylase (PEPc) activity sustained glutamic acid (Glu) synthesis, with no net effect on respired CO2. These results indicate that the root delta13C signal does not depend on the availability of root respiratory substrates and it is thus plausible that, unless the 13C photosynthetic fractionation varies at the leaf level, the root delta13C signal hardly changes under a range of natural environmental conditions.


Assuntos
Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Phaseolus/metabolismo , Raízes de Plantas/metabolismo , Aclimatação , Dióxido de Carbono/química , Isótopos de Carbono/análise , Respiração Celular/fisiologia , Escuridão , Espectroscopia de Ressonância Magnética , Fosfoenolpiruvato Carboxilase/metabolismo
9.
New Phytol ; 181(2): 374-386, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19121034

RESUMO

The (13)C isotopic signature (delta(13)C) of CO(2) respired from plants is widely used to assess carbon fluxes and ecosystem functioning. There is, however, a lack of knowledge of the metabolic basis of the delta(13)C value of respired CO(2). To elucidate the physiological mechanisms driving (12)C/(13)C fractionation during respiration, the delta(13)C of respired CO(2) from dark-acclimated leaves during the night, from darkened leaves during the light period, and from stems and roots of Ricinus communis was analysed. The delta(13)C of potential respiratory substrates, the respiratory quotient and the activities of phosphoenolpyruvatecarboxylase (PEPc) and key respiratory enzymes were also measured. It is shown here that the CO(2) evolved from darkened light-acclimated leaves during the light period is (13)C-enriched, and that this correlates with malate accumulation in the light and rapid malate decarboxylation just after the onset of darkness. Whilst CO(2) evolved from leaves was generally (13)C-enriched (but to a lesser extent during the night), CO(2) evolved from stems and roots was depleted compared with the putative respiratory substrates; the difference was mainly caused by intensive PEPc-catalysed CO(2) refixation in stems and roots. These results provide a physiological explanation for short-term variations of delta(13)C in CO(2), illustrating the effects of variations of metabolic fluxes through different biochemical pathways.


Assuntos
Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Respiração Celular/fisiologia , Folhas de Planta/metabolismo , Ricinus/metabolismo , Aclimatação , Dióxido de Carbono/química , Isótopos de Carbono/análise , Escuridão , Fosfoenolpiruvato Carboxilase/metabolismo
10.
Plant Cell Environ ; 32(10): 1310-23, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19453481

RESUMO

Isotopic labelling experiments were conducted to assess relationships among (13)C of recently assimilated carbon (deltaC(A)), foliage respiration (deltaC(F)), soluble carbohydrate (deltaC(SC)), leaf waxes (deltaC(LW)) and bulk organic matter (deltaC(OM)). Slash pine, sweetgum and maize were grown under (13)C depleted CO(2) to label biomass and then placed under ambient conditions to monitor the loss of label. In pine and sweetgum, deltaC(F) of labelled plants (approximately -44 and -35 per thousand, respectively) rapidly approached control values but remained depleted by approximately 4-6 per thousand after 3-4 months. For these tree species, no or minimal label was lost from deltaC(SC), deltaC(LW) and deltaC(OM) during the observation periods. deltaC(F) and deltaC(SC) of labelled maize plants rapidly changed and were indistinguishable from controls after 1 month, while deltaC(LW) and deltaC(OM) more slowly approached control values and remained depleted by 2-6 per thousand. Changes in deltaC(F) in slash pine and sweetgum fit a two-pool exponential model, with the fast turnover metabolic pool (approximately 3-4 d half-life) constituting only 1-2% of the total. In maize, change in deltaC(F) fits a single pool model with a half-life of 6.4 d. The (13)C of foliage respiration and biochemical pools reflect temporally integrated values of deltaC(A), with change in isotopic composition dampened by the size of metabolic carbon reserves and turnover rates.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Folhas de Planta/metabolismo , Biomassa , Carboidratos/análise , Isótopos de Carbono/metabolismo , Liquidambar/metabolismo , Modelos Químicos , Pinus/metabolismo , Especificidade da Espécie , Fatores de Tempo , Ceras/análise , Zea mays/metabolismo
11.
Rapid Commun Mass Spectrom ; 23(16): 2455-60, 2009 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-19603469

RESUMO

Wide-spread post-photosynthetic fractionation processes deplete metabolites and plant compartments in (13)C relative to assimilates to varying degrees. Fragmentation fractionation and exchange of metabolites with distinct isotopic signatures across organ boundaries further modify the patterns of plant isotopic composition. Heterotrophic organs tend to become isotopically heavier than the putative source material as a result of respiratory metabolism. In addition fractionation may occur during metabolite transport across organ and tissue boundaries. Leaf laminae, veins and petioles are leaf compartments that are arranged along a gradient of increasing weight of heterotrophic processes and along a transport chain. Thus, we expect to find consistent patterns of isotopic signatures associated with this gradient. Earlier studies on leaves of Fagus sylvatica, Glycine max, and Saccharum officinarum showed that the organic mass and cellulose of major veins or petioles were consistently more positive than the respective fraction in leaf laminae. The objective of the current study was to assess whether this pattern can be detected in a greater set of plant species. Leaves from ten species were collected in the summer of 2006 outdoors and in glasshouses. Leaf laminae including small veins were separated from the major veins and the isotopic signatures of the organic mass, and the soluble and non-soluble fractions were measured for laminae and veins separately. The organic mass, and the soluble and non-soluble fractions of leaf laminae, were depleted in (13)C relative to the veins in all cases. A general trend for the signature of organic mass being more depleted in (13)C than the soluble fraction is in accordance with well-known patterns of fractionation between metabolites.


Assuntos
Isótopos de Carbono/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo , Árvores/metabolismo
12.
Rapid Commun Mass Spectrom ; 23(16): 2586-96, 2009 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-19618376

RESUMO

The carbon isotope composition of leaf bulk organic matter was determined on the tropical tree Elaeis guineensis Jacq. (oil palm) in North Sumatra (Indonesia) to get a better understanding of the changes in carbon metabolism during the passage from heterotrophy to autotrophy of the leaves. Leaf soluble sugar (sucrose, glucose and fructose) contents, stomatal conductance and dark respiration, as well as leaf chlorophyll and nitrogen contents, were also investigated. Different growing stages were sampled from leaf rank -6 to rank 57. The mean values for the delta(13)C of bulk organic matter were -29.01 +/- 0.9 per thousand for the leaflets during the autotrophic stage, -27.87 +/- 1.08 per thousand for the petioles and -28.17 +/- 1.09 per thousand for the rachises, which are in the range of expected values for a C(3) plant. The differences in delta(13)C among leaf ranks clearly revealed the changes in the origin of the carbon source used for leaf growth. Leaves were (13)C-enriched at ranks below zero (around -27 per thousand). During this period, the 'spear' leaves were completely heterotrophic and reserves from storage organs were mobilised for the growth of these young emerging leaves. (13)C-depletion was then observed when the leaf was expanding at rank 1, and there was a continuous decrease during the progressive passage from heterotrophy until reaching full autotrophy. Thereafter, the delta(13)C remained more or less constant at around -29.5 per thousand. Changes in sugar content and in delta(13)C related to leaf ranks showed an interesting similarity of the passage from heterotrophy to autotrophy of oil palm leaves to the budburst of some temperate trees or seed germination reported in the literature.


Assuntos
Arecaceae/metabolismo , Isótopos de Carbono/metabolismo , Carbono/metabolismo , Arecaceae/química , Processos Autotróficos , Carbono/análise , Isótopos de Carbono/análise , Processos Heterotróficos , Folhas de Planta/química , Folhas de Planta/metabolismo
13.
Rapid Commun Mass Spectrom ; 23(18): 2847-56, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19670342

RESUMO

The response of root metabolism to variations in carbon source availability is critical for whole-plant nitrogen (N) assimilation and growth. However, the effect of changes in the carbohydrate input to intact roots is currently not well understood and, for example, both smaller and larger values of root:shoot ratios or root N uptake have been observed so far under elevated CO(2). In addition, previous studies on sugar starvation mainly focused on senescent or excised organs while an increasing body of data suggests that intact roots may behave differently with, for example, little protein remobilization. Here, we investigated the carbon and nitrogen primary metabolism in intact roots of French bean (Phaseolus vulgaris L.) plants maintained under continuous darkness for 4 days. We combined natural isotopic (15)N/(14)N measurements, metabolomic and (13)C-labeling data and show that intact roots continued nitrate assimilation to glutamate for at least 3 days while the respiration rate decreased. The activity of the tricarboxylic acid cycle diminished so that glutamate synthesis was sustained by the anaplerotic phosphoenolpyruvate carboxylase fixation. Presumably, the pentose phosphate pathway contributed to provide reducing power for nitrate reduction. All the biosynthetic metabolic fluxes were nevertheless down-regulated and, consequently, the concentration of all amino acids decreased. This is the case of asparagine, strongly suggesting that, as opposed to excised root tips, protein remobilization in intact roots remained very low for 3 days in spite of the restriction of respiratory substrates.


Assuntos
Marcação por Isótopo , Metabolômica , Nitrogênio/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Escuridão , Cromatografia Gasosa-Espectrometria de Massas , Nitrogênio/química , Isótopos de Nitrogênio/química , Isótopos de Nitrogênio/metabolismo , Phaseolus/química , Phaseolus/metabolismo , Phaseolus/efeitos da radiação , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos da radiação
14.
Rapid Commun Mass Spectrom ; 23(12): 1792-800, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19441048

RESUMO

The molecular composition of plant residues is suspected to largely govern the fate of their constitutive carbon (C) in soils. Labile compounds, such as metabolic carbohydrates, are affected differently from recalcitrant and structural compounds by soil-C stabilisation mechanisms. Producing (13)C-enriched plant residues with specifically labeled fractions would help us to investigate the fate in soils of the constitutive C of these compounds. The objective of the present research was to test (13)C pulse chase labeling as a method for specifically enriching the metabolic carbohydrate components of plant residues, i.e. soluble sugars and starch. Bean plants were exposed to a (13)CO(2)-enriched atmosphere for 0.5, 1, 2, 3 and 21 h. The major soluble sugars were then determined on water-soluble extracts, and starch on HCl-hydrolysable extracts. The results show a quick differential labeling between water-soluble and water-insoluble compounds. For both groups, (13)C-labeling increased linearly with time. The difference in delta(13)C signature between water-soluble and insoluble fractions was 7 per thousand after 0.5 h and 70 per thousand after 21 h. However, this clear isotopic contrast masked a substantial labeling variability within each fraction. By contrast, metabolic carbohydrates on the one hand (i.e. soluble sugars + starch) and other fractions (essentially cell wall components) on the other hand displayed quite homogeneous signatures within fractions, and a significant difference in labeling between fractions: delta(13)C = 414 +/- 3.7 per thousand and 56 +/- 5.5 per thousand, respectively. Thus, the technique generates labeled plant residues displaying contrasting (13)C-isotopic signatures between metabolic carbohydrates and other compounds, with homogenous signatures within each group. Metabolic carbohydrates being labile compounds, our findings suggest that the technique is particularly appropriate for investigating the effect of compound lability on the long-term storage of their constitutive C in soils.


Assuntos
Isótopos de Carbono/metabolismo , Phaseolus/metabolismo , Solo/análise , Coloração e Rotulagem/métodos , Amido/metabolismo , Isótopos de Carbono/análise , Phaseolus/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Amido/análise
15.
Rapid Commun Mass Spectrom ; 23(16): 2527-33, 2009 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-19603460

RESUMO

The delta(13)C (carbon isotope composition) variations in respired CO(2), total organic matter, proteins, sucrose and starch have been measured during tuber sprouting of potato (Solanum tuberosum) in darkness. Measurements were carried out both on tubers and on their growing sprouts for 23 days after the start of sprout development. Sucrose was slightly (13)C-depleted compared with starch in tubers, suggesting that starch breakdown was associated with a small isotope fractionation. In sprouts, all biochemical fractions including sucrose were (13)C-enriched compared with source tuber-sucrose, suggesting that sucrose translocation from tuber to sprouts fractionated against (12)C. However, both apparent fractionations were explained by the consumption of (13)C-depleted carbon for respiration or growth that enriched in the (13)C sucrose molecules left behind. In addition, whole tuber sucrose is constantly composed of recent sucrose from starch breakdown and old sucrose associated with an inherited, slightly (13)C-depleted pool. We therefore conclude that any fractionation at either the starch breakdown or the sucrose translocation level is unlikely under our conditions.


Assuntos
Isótopos de Carbono/análise , Carbono/análise , Solanum tuberosum/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Transporte Biológico , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Tubérculos/química , Tubérculos/metabolismo , Solanum tuberosum/química
16.
Rapid Commun Mass Spectrom ; 23(16): 2511-8, 2009 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-19603462

RESUMO

The study presents a comparison of two phloem sugar extraction methods. The amount of phloem sugar extracted and the carbon isotope composition (delta(13)C) of the total extracts and of the main phloem compounds separated by high-performance liquid chromatography (sucrose, glucose, fructose and pinitol) are compared. These two phloem sap extraction methods are exudation in distilled water and a new method using centrifugation, which avoids the addition of any solvent. We applied both extraction methods on phloem discs sampled from 38-year-old Pinus pinaster trees in south-western France throughout the period from June 2007 to December 2008 on different time-scales: hourly, daily and monthly. We found that the centrifugation method systematically extracted ca. 50% less compounds from the phloem discs than the exudation method. In addition, the two extraction methods provided similar delta(13)C values of the total extracts, but the values obtained by the exudation method were 0.6 per thousand more negative than those calculated from the mass balance using the individual constituents. Over the growing season, both extraction methods exhibited lower total sugar content and more (13)C-enriched phloem sap in summer compared with winter values. These findings suggest that both extraction methods can be applied to study the carbon isotope composition of phloem sap, and the centrifugation method has the advantage that no solvent has to be added. The exudation method, however, is more appropriate for the quantification of the amounts of phloem sugars.


Assuntos
Carboidratos/análise , Isótopos de Carbono/análise , Centrifugação/métodos , Fracionamento Químico/métodos , Floema/química , Pinus/química , Pinus/crescimento & desenvolvimento , Extratos Vegetais/análise , Estações do Ano
17.
Rapid Commun Mass Spectrom ; 23(16): 2499-506, 2009 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-19603465

RESUMO

The natural (13)C/(12)C isotope composition (delta(13)C) of plants and organic compounds within plant organs is a powerful tool to understand carbon allocation patterns and the regulation of photosynthetic or respiratory metabolism. However, many enzymatic fractionations are currently unknown, thus impeding our understanding of carbon trafficking pathways within plant cells. One of them is the (12)C/(13)C isotope effect associated with invertases (EC 3.2.1.26) that are cornerstone enzymes for Suc metabolism and translocation in plants. Another conundrum of isotopic plant biology is the need to measure accurately the specific delta(13)C of individual carbohydrates. Here, we examined two complementary methods for measuring the delta(13)C value of sucrose, glucose and fructose, that is, off-line high-performance liquid chromatography (HPLC) purification followed by elemental analysis and isotope ratio mass spectrometry (EA-IRMS) analysis, and gas chromatography-combustion (GC-C)-IRMS. We also used these methods to determine the in vitro (12)C/(13)C isotope effect associated with the yeast invertase. Our results show that, although providing more variable values than HPLC approximately EA-IRMS, and being sensitive to derivatization conditions, the GC-C-IRMS method gives reliable results. When applied to the invertase reaction, both methods indicate that the (12)C/(13)C isotope effect is rather small and it is not affected by the use of heavy water (D(2)O).


Assuntos
Carboidratos/análise , Isótopos de Carbono/química , Cromatografia Gasosa/métodos , Cromatografia Líquida de Alta Pressão/métodos , Fabaceae/química , beta-Frutofuranosidase/química , Proteínas Fúngicas/química , Cinética , Leveduras/enzimologia
18.
Rapid Commun Mass Spectrom ; 23(16): 2476-88, 2009 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-19603463

RESUMO

Starch and soluble sugars are the major photosynthetic products, and their carbon isotope signatures reflect external versus internal limitations of CO(2) fixation. There has been recent renewed interest in the isotope composition of carbohydrates, mainly for use in CO(2) flux partitioning studies at the ecosystem level. The major obstacle to the use of carbohydrates in such studies has been the lack of an acknowledged method to isolate starch and soluble sugars for isotopic measurements. We here report on the comparison and evaluation of existing methods (acid and enzymatic hydrolysis for starch; ion-exchange purification and compound-specific analysis for sugars). The selectivity and reproducibility of the methods were tested using three approaches: (i) an artificial leaf composed of a mixture of isotopically defined compounds, (ii) a C(4) leaf spiked with C(3) starch, and (iii) two natural plant samples (root, leaf). Starch preparation methods based on enzymatic or acid hydrolysis did not yield similar results and exhibited contaminations by non-starch compounds. The specificity of the acidic hydrolysis method was especially low, and we therefore suggest terming these preparations as HCl-hydrolysable carbon, rather than starch. Despite being more specific, enzyme-based methods to isolate starch also need to be further optimized to increase specificity. The analysis of sugars by ion-exchange methods (bulk preparations) was fast but produced more variable isotope compositions than compound-specific methods. Compound-specific approaches did not in all cases correctly reproduce the target values, mainly due to unsatisfactory separation of sugars and background contamination. Our study demonstrates that, despite their wide application, methods for the preparation of starch and soluble sugars for the analysis of carbon isotope composition are not (yet) reliable enough to be routinely applied and further research is urgently needed to resolve the identified problems.


Assuntos
Carboidratos/química , Carboidratos/isolamento & purificação , Isótopos de Carbono/análise , Técnicas de Química Analítica/métodos , Plantas/química , Amido/análise , Amido/isolamento & purificação , Estruturas Vegetais/química , Solubilidade
19.
J Agric Food Chem ; 67(33): 9432-9440, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31368703

RESUMO

Potassium fertilization is commonly practiced in oil palm (Elaeis guineensis) plantations to increase yield. However, its effects on fruit oil content and composition are not well documented. Here, we conducted bunch, metabolomics, and oil composition analyses in two contrasting crosses (Deli × La Mé and Deli × Yangambi) grown under different K fertilization conditions. K availability impacted bunch oil content, resulting in lower water content and higher oil proportion in fruit mesocarp, in Deli × La Mé only, thus showing differential responses of crosses to K. Oil composition at maturity did not significantly change under low K conditions despite clear alterations in fruit metabolism associated with lipid production during maturation, demonstrating the resilience of oil biosynthetic metabolism. However, the analysis of variance in oil content (across K treatments and crosses) demonstrates that sugar availability, lipid synthesis rates, and metabolic recycling are all important in determining the oil content.


Assuntos
Arecaceae/metabolismo , Fertilizantes/análise , Frutas/química , Lipídeos/química , Óleo de Palmeira/química , Potássio/metabolismo , Arecaceae/química , Arecaceae/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Metabolismo dos Lipídeos
20.
Appl Biochem Biotechnol ; 187(3): 744-752, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30054862

RESUMO

The benefits of Lithospermum officinale has encouraged people to continue using its extract (CAS 90063-58-4) in both medicinal and cosmetic industries despite the fact that chemical analysis confirms the presence of pyrrolizidine alkaloids (PAs) in the extract. While the cultivation of L. officinale takes, at least, 2 years to produce usable crops, its callus culture proliferated 8.3 times with 4.9-fold biomass in less than 30 days under the applied conditions in this study. Under the applied conditions, the cell extract contained no toxic PAs while phenylpropanoid pathway was active toward phenolic acids formation not toward naphthoquinone derivatives. Rosmarinic acid was produced as the main constituent. Total phenolic content and antioxidant capacity of the proliferated cell extracts were similar to those of the extracts of the natural plant tissues, in particular from the root. These results support the idea that the extract of L. officinale cells can be a reliable substitute for the extract of the natural plant tissues.


Assuntos
Sequestradores de Radicais Livres/química , Lithospermum/química , Lithospermum/citologia , Extratos Vegetais/química , Técnicas de Cultura de Células , Fenóis/análise , Alcaloides de Pirrolizidina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA