Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 141(4): 301-312, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31735076

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most common clinical arrhythmia and is associated with heart failure, stroke, and increased mortality. The myocardial substrate for AF is poorly understood because of limited access to primary human tissue and mechanistic questions around existing in vitro or in vivo models. METHODS: Using an MYH6:mCherry knock-in reporter line, we developed a protocol to generate and highly purify human pluripotent stem cell-derived cardiomyocytes displaying physiological and molecular characteristics of atrial cells. We modeled human MYL4 mutants, one of the few definitive genetic causes of AF. To explore non-cell-autonomous components of AF substrate, we also created a zebrafish Myl4 knockout model, which exhibited molecular, cellular, and physiologic abnormalities that parallel those in humans bearing the cognate mutations. RESULTS: There was evidence of increased retinoic acid signaling in both human embryonic stem cells and zebrafish mutant models, as well as abnormal expression and localization of cytoskeletal proteins, and loss of intracellular nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide + hydrogen. To identify potentially druggable proximate mechanisms, we performed a chemical suppressor screen integrating multiple human cellular and zebrafish in vivo endpoints. This screen identified Cx43 (connexin 43) hemichannel blockade as a robust suppressor of the abnormal phenotypes in both models of MYL4 (myosin light chain 4)-related atrial cardiomyopathy. Immunofluorescence and coimmunoprecipitation studies revealed an interaction between MYL4 and Cx43 with altered localization of Cx43 hemichannels to the lateral membrane in MYL4 mutants, as well as in atrial biopsies from unselected forms of human AF. The membrane fraction from MYL4-/- human embryonic stem cell derived atrial cells demonstrated increased phospho-Cx43, which was further accentuated by retinoic acid treatment and by the presence of risk alleles at the Pitx2 locus. PKC (protein kinase C) was induced by retinoic acid, and PKC inhibition also rescued the abnormal phenotypes in the atrial cardiomyopathy models. CONCLUSIONS: These data establish a mechanistic link between the transcriptional, metabolic and electrical pathways previously implicated in AF substrate and suggest novel avenues for the prevention or therapy of this common arrhythmia.


Assuntos
Fibrilação Atrial , Mutação , Miócitos Cardíacos , Cadeias Leves de Miosina , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Linhagem Celular , Conexina 43/genética , Conexina 43/metabolismo , Técnicas de Inativação de Genes , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Biochem Biophys Res Commun ; 461(2): 281-6, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25871791

RESUMO

Embryonic stem cells offer multiple advantages over adult stem cells in terms of achieving acceptable number of functional cardiomyocytes to be exploited in cell therapy. However, differentiation efficacy is still a major issue to be solved before moving to regenerative medicine. Although a vast number of chemical compounds have been tested on efficiency of cardiac differentiation, the effect of fish oil components, such as eicosapentaenoic acid (EPA) on developmental bioenergetics, and hence cardiac differentiation, remained unstudied. EPA has been reported to have several cardioprotective effects, but there is no study addressing its role in cardiac differentiation. After mesoderm induction of embryoid bodies (EBs) derived from mouse embryonic stem cells (mESCs) in hanging drops initiated by ascorbic acid, they were treated with various concentrations of EPA. Gene and protein expression and functional properties of cardiomyocytes derived from ESCs were evaluated following treatment with various concentrations of EPA. Exposure to low concentrations of EPA (10 µM) increased percentage of beating colonies and beating area. This treatment also resulted in up to 3 fold increase in expression of NKX2-5, MEF2C, MYH6, TNNT2 and CX43. FACS analysis confirmed gene expression analysis with increased percentage of MYH6 positive cells in EPA-treated group compared to the control group. In contrast, the expression of genes coding for cardiac differentiation, remained constant or even declined with higher concentrations of EPA. In conclusion, we have demonstrated that treatment of mESCs undergoing cardiac differentiation with low concentration, but not high concentration of EPA up-regulate transcription of genes associated with cardiac development.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ácido Eicosapentaenoico/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Miócitos Cardíacos/citologia , Animais , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/metabolismo
3.
J Membr Biol ; 247(8): 695-701, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24930024

RESUMO

Calcium is a key regulator of cell dynamics. Dysregulation of its cytosolic concentration is implicated in the pathophysiology of several diseases. This study aimed to assess the effects of calcium on the network of membrane cytoskeletal proteins. Erythrocyte membranes were obtained from eight healthy donors and incubated with 250 µM and 1.25 mM calcium solutions. Membrane cytoskeletal proteins were quantified using SDS-PAGE at baseline and after 3 and 5 days of incubation. Supra-physiologic concentrations of calcium (1.25 mM) induced a significant proteolysis in membrane cytoskeletal proteins, compared with magnesium (p < 0.001). Actin exhibited the highest sensitivity to calcium-induced proteolysis (6.8 ± 0.3 vs. 5.3 ± 0.6, p < 0.001), while spectrin (39.9 ± 1.0 vs. 40.3 ± 2.0, p = 0.393) and band-6 (6.3 ± 0.3 vs. 6.8 ± 0.8, p = 0.191) were more resistant to proteolysis after incubation with calcium in the range of endoplasmic reticulum concentrations (250 µM). Aggregation of membrane cytoskeletal proteins was determined after centrifugation and was significantly higher after incubation with calcium ions compared with control, EDTA and magnesium solutions (p < 0.001). In a supra-physiologic range of 1.25-10 mM of calcium ions, there was a nearly perfect linear relationship between calcium concentration and aggregation of erythrocyte membrane cytoskeletal proteins (R(2) = 0.971, p < 0.001). Our observation suggests a strong interaction between calcium ions and membrane cytoskeletal network. Cumulative effects of disrupted calcium homeostasis on cytoskeletal proteins need to be further investigated at extended periods of time in disease states.


Assuntos
Actinas/metabolismo , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Cálcio/farmacologia , Proteínas do Citoesqueleto/metabolismo , Membrana Eritrocítica/metabolismo , Espectrina/metabolismo , Eletroforese em Gel de Poliacrilamida , Membrana Eritrocítica/efeitos dos fármacos , Humanos , Técnicas In Vitro
4.
Clin Lab ; 60(12): 2073-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25651743

RESUMO

BACKGROUND: 8-iso-PGF2α is a family of PGF2α that could be offered as a non-invasive tool to represent in vivo oxidation status, as a link between oxidative milieus and vascular dysfunction. METHODS: A total of 45 patients with type 2 diabetes and 45 healthy adults were studied in this cross-sectional analysis. Blood samples were collected to measure the level of lipid profile, oxidative stress, and glycemic control indices. The sensitivity and specificity of 8-iso-PGF2α as a screening test were analyzed in the cut-off range 252 - 377.5 pg/mL and the corresponding receiver operating characteristics (ROC) were plotted to assess performance of the test. RESULTS: 8-iso-PGF2α level was significantly higher in the diabetic group (439.11 pg/mL ± 181.13 vs. 380.93 pg/mL ± 146.52). After adjustments for age, gender, and body mass index (BMI), linear regression analysis revealed that homeostasis model assessment of insulin resistance (HOMA-IR), blood pressure, fasting blood sugar (FBS), serum creatinine, insulin, oxLDL, and CRP levels are directly correlated with 8-iso-PGF2α in the 25% - 75% quartiles. Moreover, their mean levels were higher in quartiles with greater 8-iso-PGF2α levels. The cut-offs showing the best equilibrium between sensitivity and specificity approached 269.5 pg/mL with 83% and 62.5% sensitivity and specificity, respectively. CONCLUSIONS: Our study provides evidence for the application of serum 8-isoPGF2α in the 25 - 75% quartile ranges to screen for the severity of oxidative reactions and glycemic control in vivo without need for any further in vitro enzymatic reactions, with higher levels, reflecting more severe oxidation and poor glycemic control.


Assuntos
Glicemia/análise , Diabetes Mellitus Tipo 2/sangue , Dinoprosta/análogos & derivados , Hemoglobinas Glicadas/análise , Estresse Oxidativo , Idoso , Área Sob a Curva , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos Transversais , Diabetes Mellitus Tipo 2/diagnóstico , Dinoprosta/sangue , Feminino , Humanos , Mediadores da Inflamação/sangue , Insulina/sangue , Modelos Lineares , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Curva ROC
5.
medRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333423

RESUMO

Disorders of gut-brain interaction (DGBIs), formerly known as functional gastrointestinal disorders, are extremely common and historically difficult to manage. This is largely because their cellular and molecular mechanisms have remained poorly understood and understudied. One approach to unravel the molecular underpinnings of complex disorders such as DGBIs is performing genome wide association studies (GWASs). However, due to the heterogenous and non-specific nature of GI symptoms, it has been difficult to accurately classify cases and controls. Thus, to perform reliable studies, we need to access large patient populations which has been difficult to date. Here, we leveraged the UK Biobank (UKBB) database, containing genetic and medical record data of over half a million individuals, to perform GWAS for five DGBI categories: functional chest pain, functional diarrhea, functional dyspepsia, functional dysphagia, and functional fecal incontinence. By applying strict inclusion and exclusion criteria, we resolved patient populations and identified genes significantly associated with each condition. Leveraging multiple human single-cell RNA-sequencing datasets, we found that the disease associated genes were highly expressed in enteric neurons, which innervate and control GI functions. Further expression and association testing-based analyses revealed specific enteric neuron subtypes consistently linked with each DGBI. Furthermore, protein-protein interaction analysis of each of the disease associated genes revealed protein networks specific to each DGBI, including hedgehog signaling for functional chest pain and neuronal function and neurotransmission for functional diarrhea and functional dyspepsia. Finally, through retrospective medical record analysis we found that drugs that inhibit these networks are associated with an increased disease risk, including serine/threonine kinase 32B drugs for functional chest pain, solute carrier organic anion transporter family member 4C1, mitogen-activated protein kinase 6, and dual serine/threonine and tyrosine protein kinase drugs for functional dyspepsia, and serotonin transporter drugs for functional diarrhea. This study presents a robust strategy for uncovering the tissues, cell types, and genes involved in DGBIs, presenting novel predictions of the mechanisms underlying these historically intractable and poorly understood diseases.

6.
J Interv Card Electrophysiol ; 66(5): 1165-1175, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36411365

RESUMO

BACKGROUND: Tyrosine kinase inhibitors (TKIs) have been increasingly used as first-line therapy in hematologic and solid-organ malignancies. Multiple TKIs have been linked with the development of cardiovascular complications, especially atrial arrhythmias, but data on ventricular arrhythmias (VAs) is scarce. METHODS: Herein we describe five detailed cases of VAs related to TKI use in patients with varied baseline cardiovascular risk factors between 2019 and 2022 at three centers. Individual chart review was conducted retrospectively. RESULTS: Patient ages ranged from 43 to 83 years. Three patients were on Bruton's TKI (2 ibrutinib and 1 zanubrutinib) at the time of VAs; other TKIs involved were afatinib and dasatinib. Three patients had a high burden of non-sustained ventricular tachycardia (NSVT) requiring interventions, whereas two patients had sustained VAs. While all patients in our case series had significant improvement in VA burden after TKI cessation, two patients required new long-term antiarrhythmic drug therapy, and one had an implantable defibrillator cardioverter (ICD) placed due to persistent VAs after cessation of TKI therapy. One patient reinitiated TKI therapy after control of arrhythmia was achieved with antiarrhythmic drug therapy. CONCLUSIONS: Given the expanding long-term use of TKIs among a growing population of cancer patients, it is critical to acknowledge the association of TKIs with cardiovascular complications such as VAs, to characterize those at risk, and deploy preventive and therapeutic measures to avoid such complications and interference with oncologic therapy. Further efforts are warranted to develop monitoring protocols and optimal treatment strategies for TKI-induced VAs.


Assuntos
Desfibriladores Implantáveis , Taquicardia Ventricular , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Antiarrítmicos/uso terapêutico , Estudos Retrospectivos , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/tratamento farmacológico , Desfibriladores Implantáveis/efeitos adversos , Morte Súbita Cardíaca/prevenção & controle
7.
Cell Stem Cell ; 30(5): 632-647.e10, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37146583

RESUMO

Schwann cells (SCs) are the primary glia of the peripheral nervous system. SCs are involved in many debilitating disorders, including diabetic peripheral neuropathy (DPN). Here, we present a strategy for deriving SCs from human pluripotent stem cells (hPSCs) that enables comprehensive studies of SC development, physiology, and disease. hPSC-derived SCs recapitulate the molecular features of primary SCs and are capable of in vitro and in vivo myelination. We established a model of DPN that revealed the selective vulnerability of SCs to high glucose. We performed a high-throughput screen and found that an antidepressant drug, bupropion, counteracts glucotoxicity in SCs. Treatment of hyperglycemic mice with bupropion prevents their sensory dysfunction, SC death, and myelin damage. Further, our retrospective analysis of health records revealed that bupropion treatment is associated with a lower incidence of neuropathy among diabetic patients. These results highlight the power of this approach for identifying therapeutic candidates for DPN.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Camundongos , Animais , Humanos , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/etiologia , Bupropiona/uso terapêutico , Estudos Retrospectivos , Nervo Isquiático , Células de Schwann , Descoberta de Drogas
8.
iScience ; 25(4): 104153, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35434558

RESUMO

The sinoatrial node (SAN) is the primary pacemaker of the heart. The human SAN is poorly understood due to limited primary tissue access and limitations in robust in vitro derivation methods. We developed a dual SHOX2:GFP; MYH6:mCherry knockin human embryonic stem cell (hESC) reporter line, which allows the identification and purification of SAN-like cells. Using this line, we performed several rounds of chemical screens and developed an efficient strategy to generate and purify hESC-derived SAN-like cells (hESC-SAN). The derived hESC-SAN cells display molecular and electrophysiological characteristics of bona fide nodal cells, which allowed exploration of their transcriptional profile at single-cell level. In sum, our dual reporter system facilitated an effective strategy for deriving human SAN-like cells, which can potentially be used for future disease modeling and drug discovery.

9.
Am J Cardiol ; 146: 99-106, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33539857

RESUMO

Individuals with established cardiovascular disease or a high burden of cardiovascular risk factors may be particularly vulnerable to develop complications from coronavirus disease 2019 (COVID-19). We conducted a prospective cohort study at a tertiary care center to identify risk factors for in-hospital mortality and major adverse cardiovascular events (MACE; a composite of myocardial infarction, stroke, new acute decompensated heart failure, venous thromboembolism, ventricular or atrial arrhythmia, pericardial effusion, or aborted cardiac arrest) among consecutively hospitalized adults with COVID-19, using multivariable binary logistic regression analysis. The study population comprised 586 COVID-19 positive patients. Median age was 67 (IQR: 55 to 80) years, 47.4% were female, and 36.7% had cardiovascular disease. Considering risk factors, 60.2% had hypertension, 39.8% diabetes, and 38.6% hyperlipidemia. Eighty-two individuals (14.0%) died in-hospital, and 135 (23.0%) experienced MACE. In a model adjusted for demographic characteristics, clinical presentation, and laboratory findings, age (odds ratio [OR], 1.28 per 5 years; 95% confidence interval [CI], 1.13 to 1.45), previous ventricular arrhythmia (OR, 18.97; 95% CI, 3.68 to 97.88), use of P2Y12-inhibitors (OR, 7.91; 95% CI, 1.64 to 38.17), higher C-reactive protein (OR, 1.81: 95% CI, 1.18 to 2.78), lower albumin (OR, 0.64: 95% CI, 0.47 to 0.86), and higher troponin T (OR, 1.84; 95% CI, 1.39 to 2.46) were associated with mortality (p <0.05). After adjustment for demographics, presentation, and laboratory findings, predictors of MACE were higher respiratory rates, altered mental status, and laboratory abnormalities, including higher troponin T (p <0.05). In conclusion, poor prognostic markers among hospitalized patients with COVID-19 included older age, pre-existing cardiovascular disease, respiratory failure, altered mental status, and higher troponin T concentrations.


Assuntos
COVID-19/epidemiologia , Doenças Cardiovasculares/epidemiologia , Sistema de Registros , Idoso , Idoso de 80 Anos ou mais , Comorbidade , Feminino , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , SARS-CoV-2 , Taxa de Sobrevida/tendências , Estados Unidos/epidemiologia
10.
bioRxiv ; 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32511360

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has led to a global health crisis, and yet our understanding of the disease pathophysiology and potential treatment options remains limited. SARS-CoV-2 infection occurs through binding and internalization of the viral spike protein to angiotensin converting enzyme 2 (ACE2) on the host cell membrane. Lethal complications are caused by damage and failure of vital organs that express high levels of ACE2, including the lungs, the heart and the kidneys. Here, we established a high-throughput drug screening strategy to identify therapeutic candidates that reduce ACE2 levels in human embryonic stem cell (hESC) derived cardiac cells. Drug target analysis of validated hit compounds, including 5 alpha reductase inhibitors, revealed androgen signaling as a key modulator of ACE2 levels. Treatment with the 5 alpha reductase inhibitor dutasteride reduced ACE2 levels and internalization of recombinant spike receptor binding domain (Spike-RBD) in hESC-derived cardiac cells and human alveolar epithelial cells. Finally, clinical data on coronavirus disease 2019 (COVID-19) patients demonstrated that abnormal androgen states are significantly associated with severe disease complications and cardiac injury as measured by blood troponin T levels. These findings provide important insights on the mechanism of increased disease susceptibility in male COVID-19 patients and identify androgen receptor inhibition as a potential therapeutic strategy.

11.
Cardiovasc Res ; 116(3): 658-670, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173076

RESUMO

AIMS: Human embryonic stem cells (hESCs) can be used to generate scalable numbers of cardiomyocytes (CMs) for studying cardiac biology, disease modelling, drug screens, and potentially for regenerative therapies. A fluorescence-based reporter line will significantly enhance our capacities to visualize the derivation, survival, and function of hESC-derived CMs. Our goal was to develop a reporter cell line for real-time monitoring of live hESC-derived CMs. METHODS AND RESULTS: We used CRISPR/Cas9 to knock a mCherry reporter gene into the MYH6 locus of hESC lines, H1 and H9, enabling real-time monitoring of the generation of CMs. MYH6:mCherry+ cells express atrial or ventricular markers and display a range of cardiomyocyte action potential morphologies. At 20 days of differentiation, MYH6:mCherry+ cells show features characteristic of human CMs and can be used successfully to monitor drug-induced cardiotoxicity and oleic acid-induced cardiac arrhythmia. CONCLUSION: We created two MYH6:mCherry hESC reporter lines and documented the application of these lines for disease modelling relevant to cardiomyocyte biology.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Diferenciação Celular , Doxorrubicina/toxicidade , Cardiopatias/induzido quimicamente , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Ácido Oleico/toxicidade , Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Biomarcadores/metabolismo , Sistemas CRISPR-Cas , Miosinas Cardíacas/genética , Cardiotoxicidade , Linhagem Celular , Técnicas de Introdução de Genes , Genes Reporter , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/patologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/genética , Fatores de Tempo , Proteína Vermelha Fluorescente
12.
Cell Stem Cell ; 27(6): 876-889.e12, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232663

RESUMO

SARS-CoV-2 infection has led to a global health crisis, and yet our understanding of the disease and potential treatment options remains limited. The infection occurs through binding of the virus with angiotensin converting enzyme 2 (ACE2) on the cell membrane. Here, we established a screening strategy to identify drugs that reduce ACE2 levels in human embryonic stem cell (hESC)-derived cardiac cells and lung organoids. Target analysis of hit compounds revealed androgen signaling as a key modulator of ACE2 levels. Treatment with antiandrogenic drugs reduced ACE2 expression and protected hESC-derived lung organoids against SARS-CoV-2 infection. Finally, clinical data on COVID-19 patients demonstrated that prostate diseases, which are linked to elevated androgen, are significant risk factors and that genetic variants that increase androgen levels are associated with higher disease severity. These findings offer insights on the mechanism of disproportionate disease susceptibility in men and identify antiandrogenic drugs as candidate therapeutics for COVID-19.


Assuntos
Androgênios/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Gravidade do Paciente , Receptores de Coronavírus/metabolismo , Transdução de Sinais , Adulto , Antagonistas de Androgênios , Androgênios/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Antivirais/uso terapêutico , COVID-19/complicações , Células Cultivadas , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Organoides/efeitos dos fármacos , Organoides/virologia , Fatores de Risco , Fatores Sexuais , Células Vero , Tratamento Farmacológico da COVID-19
13.
Biofactors ; 45(3): 427-438, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30907984

RESUMO

One of the major issues in cell therapy of myocardial infarction (MI) is early death of engrafted cells in a harsh oxidative stress environment, which limits the potential therapeutic utility of this strategy in the clinical setting. Increasing evidence implicates beneficial effects of omega-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and ascorbic acid (AA) in cardiovascular diseases, in particular their role in ameliorating fibrosis. In the current study, we aim to assess the cytoprotective role of EPA + DHA and AA in protecting embryonic stem cell (ESC)-derived cardiac lineage cells and amelioration of fibrosis. Herein, we have shown that preincubation of the cells with EPA + DHA + AA prior to H2 O2 treatment attenuated generation of reactive oxygen species (ROS) and enhanced cell viability. Gene expression analysis revealed that preincubation with EPA + DHA + AA followed by H2 O2 treatment, upregulated heme oxygenase-1 (HO-1) along with cardiac markers (GATA4, myosin heavy chain, α isoform [MYH6]), connexin 43 [CX43]) and attenuated oxidative stress-induced upregulation of fibroblast markers (vimentin and collagen type 1 [Col1]). Alterations in gene expression patterns were followed by marked elevation of cardiac troponin (TNNT2) positive cells and reduced numbers of vimentin positive cells. An injection of EPA + DHA + AA-pretreated ESC-derived cardiac lineage cells into the ischemic myocardium of a rat model of MI significantly reduced fibrosis compared to the vehicle group. This study provided evidence that EPA + DHA + AA may be an appropriate preincubation regimen for regenerative purposes. © 2019 BioFactors, 45(3):427-438, 2019.


Assuntos
Ácido Ascórbico/uso terapêutico , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Ácidos Graxos Ômega-3/uso terapêutico , Animais , Biomarcadores/metabolismo , Western Blotting , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ecocardiografia , Ácido Eicosapentaenoico/uso terapêutico , Heme Oxigenase-1/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
14.
Nat Commun ; 9(1): 2681, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29992946

RESUMO

GLIS3 mutations are associated with type 1, type 2, and neonatal diabetes, reflecting a key function for this gene in pancreatic ß-cell biology. Previous attempts to recapitulate disease-relevant phenotypes in GLIS3-/- ß-like cells have been unsuccessful. Here, we develop a "minimal component" protocol to generate late-stage pancreatic progenitors (PP2) that differentiate to mono-hormonal glucose-responding ß-like (PP2-ß) cells. Using this differentiation platform, we discover that GLIS3-/- hESCs show impaired differentiation, with significant death of PP2 and PP2-ß cells, without impacting the total endocrine pool. Furthermore, we perform a high-content chemical screen and identify a drug candidate that rescues mutant GLIS3-associated ß-cell death both in vitro and in vivo. Finally, we discovered that loss of GLIS3 causes ß-cell death, by activating the TGFß pathway. This study establishes an optimized directed differentiation protocol for modeling human ß-cell disease and identifies a drug candidate for treating a broad range of GLIS3-associated diabetic patients.


Assuntos
Diabetes Mellitus/prevenção & controle , Descoberta de Drogas/métodos , Hipoglicemiantes/farmacologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Proteínas de Ligação a DNA , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Perfilação da Expressão Gênica , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos SCID , Mutação , Pirazóis/farmacologia , Quinolinas/farmacologia , Proteínas Repressoras , Transativadores , Fatores de Transcrição/metabolismo , Transplante Heterólogo
15.
Nat Commun ; 9(1): 4815, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446643

RESUMO

Common disorders, including diabetes and Parkinson's disease, are caused by a combination of environmental factors and genetic susceptibility. However, defining the mechanisms underlying gene-environment interactions has been challenging due to the lack of a suitable experimental platform. Using pancreatic ß-like cells derived from human pluripotent stem cells (hPSCs), we discovered that a commonly used pesticide, propargite, induces pancreatic ß-cell death, a pathological hallmark of diabetes. Screening a panel of diverse hPSC-derived cell types we extended this observation to a similar susceptibility in midbrain dopamine neurons, a cell type affected in Parkinson's disease. We assessed gene-environment interactions using isogenic hPSC lines for genetic variants associated with diabetes and Parkinson's disease. We found GSTT1-/- pancreatic ß-like cells and dopamine neurons were both hypersensitive to propargite-induced cell death. Our study identifies an environmental chemical that contributes to human ß-cell and dopamine neuron loss and validates a novel hPSC-based platform for determining gene-environment interactions.


Assuntos
Cicloexanos/toxicidade , Diabetes Mellitus/induzido quimicamente , Neurônios Dopaminérgicos/efeitos dos fármacos , Interação Gene-Ambiente , Células Secretoras de Insulina/efeitos dos fármacos , Praguicidas/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Diferenciação Celular , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/enzimologia , Glutationa Transferase/deficiência , Glutationa Transferase/genética , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/enzimologia , Mesencéfalo/citologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/enzimologia , Camundongos , Modelos Biológicos , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/enzimologia
16.
Stem Cell Reports ; 10(3): 848-859, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29503094

RESUMO

The LIM-homeodomain transcription factor ISL1 marks multipotent cardiac progenitors that give rise to cardiac muscle, endothelium, and smooth muscle cells. ISL1+ progenitors can be derived from human pluripotent stem cells, but the inability to efficiently isolate pure populations has limited their characterization. Using a genetic selection strategy, we were able to highly enrich ISL1+ cells derived from human embryonic stem cells. Comparative quantitative proteomic analysis of enriched ISL1+ cells identified ALCAM (CD166) as a surface marker that enabled the isolation of ISL1+ progenitor cells. ALCAM+/ISL1+ progenitors are multipotent and differentiate into cardiomyocytes, endothelial cells, and smooth muscle cells. Transplantation of ALCAM+ progenitors enhances tissue recovery, restores cardiac function, and improves angiogenesis through activation of AKT-MAPK signaling in a rat model of myocardial infarction, based on cardiac MRI and histology. Our study establishes an efficient method for scalable purification of human ISL1+ cardiac precursor cells for therapeutic applications.


Assuntos
Células-Tronco Embrionárias/citologia , Proteínas com Homeodomínio LIM/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Masculino , Camundongos , Infarto do Miocárdio/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso , Proteômica/métodos , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo
17.
Nat Commun ; 8(1): 298, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28824164

RESUMO

Diabetes is linked to loss of pancreatic beta-cells. Pluripotent stem cells offer a valuable source of human beta-cells for basic studies of their biology and translational applications. However, the signalling pathways that regulate beta-cell development and functional maturation are not fully understood. Here we report a high content chemical screen, revealing that H1152, a ROCK inhibitor, promotes the robust generation of insulin-expressing cells from multiple hPSC lines. The insulin expressing cells obtained after H1152 treatment show increased expression of mature beta cell markers and improved glucose stimulated insulin secretion. Moreover, the H1152-treated beta-like cells show enhanced glucose stimulated insulin secretion and increased capacity to maintain glucose homeostasis after transplantation. Conditional gene knockdown reveals that inhibition of ROCKII promotes the generation and maturation of glucose-responding cells. This study provides a strategy to promote human beta-cell maturation and identifies an unexpected role for the ROCKII pathway in the development and maturation of beta-like cells.Our incomplete understanding of how pancreatic beta cells form limits the generation of beta-like cells from human pluripotent stem cells (hPSC). Here, the authors identify a ROCKII inhibitor H1152 as increasing insulin secreting cells from hPSCs and improving beta-cell maturation on transplantation in vivo.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Células Secretoras de Insulina/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Glicemia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos SCID , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transplante de Células-Tronco/métodos , Transplante Heterólogo , Quinases Associadas a rho/metabolismo
18.
Mol Biotechnol ; 59(6): 207-220, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28509990

RESUMO

Derivation of cardiomyocytes directly from patients' own fibroblasts could offer a new therapeutic approach for those with ischemic heart disease. An essential step toward clinical application is to establish safe conversion of human fibroblasts into a cardiac fate. Here we aimed to efficiently and safely generate cardiomyocytes from human fibroblasts by direct delivery of reprogramming recombinant cell permeant form of reprogramming proteins followed by cardio-inductive signals. Human fetal and adult fibroblasts were transiently exposed to transactivator of transcription-fused recombinant OCT4, SOX2, KLF4 and c-MYC for 2 weeks and then were directly differentiated toward protein-induced cardiomyocyte-like cells (p-iCLCs) in a cardiac fate niche, carried out by treatment with a set of cardiogenic small molecules (sequential treatment of Chir, and IWP-2, SB431542 and purmorphamine). The cells showed cardiac phenotype over a period of 3 weeks without first undergoing reprogramming into or through a pluripotent intermediate, shown by lack of expression of key pluripotency markers. p-iCLCs exhibited cardiac features at both the gene and protein levels. Our study provides an alternative method for the generation of p-iCLCs which shortcut reprogramming toward allogeneic cardiomyocytes in a safe and efficient manner and could facilitate generation of genetic material-free cardiomyocytes.


Assuntos
Fibroblastos/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA