Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochemistry ; 56(40): 5328-5337, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28876049

RESUMO

The ligand-induced conformational changes of periplasmic binding proteins (PBP) play a key role in the acquisition of metabolites in ATP binding cassette (ABC) transport systems. This conformational change allows for differential recognition of the ligand occupancy of the PBP by the ABC transporter. This minimizes futile ATP hydrolysis in the transporter, a phenomenon in which ATP hydrolysis is not coupled to metabolite transport. In many systems, the PBP conformational change is insufficient at eliminating futile ATP hydrolysis. Here we identify an additional state of the PBP that is also allosterically regulated by the ligand. Ligand binding to the homodimeric apo PBP leads to a tightening of the interface α-helices so that the hydrogen bonding pattern shifts to that of a 310 helix, in-turn altering the contacts and the dynamics of the protein interface so that the monomer exists in the presence of ligand.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/metabolismo , Multimerização Proteica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Cristalografia por Raios X , Hidrólise , Ligantes , Lectina de Ligação a Manose/química , Lectina de Ligação a Manose/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Thermotoga maritima
2.
J Biol Chem ; 289(43): 30090-100, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25210043

RESUMO

Many bacteria exist in a state of feast or famine where high nutrient availability leads to periods of growth followed by nutrient scarcity and growth stagnation. To adapt to the constantly changing nutrient flux, metabolite acquisition systems must be able to function over a broad range. This, however, creates difficulties as nutrient concentrations vary over many orders of magnitude, requiring metabolite acquisition systems to simultaneously balance ligand specificity and the dynamic range in which a response to a metabolite is elicited. Here we present how a gene duplication of a periplasmic binding protein in a mannose ATP-binding cassette transport system potentially resolves this dilemma through gene functionalization. Determination of ligand binding affinities and specificities of the gene duplicates with fluorescence and circular dichroism demonstrates that although the binding specificity is maintained the Kd values for the same ligand differ over three orders of magnitude. These results suggest that this metabolite acquisition system can transport ligand at both low and high environmental concentrations while preventing saturation with related and less preferentially metabolized compounds. The x-ray crystal structures of the ß-mannose-bound proteins help clarify the structural basis of gene functionalization and reveal that affinity and specificity are potentially encoded in different regions of the binding site. These studies suggest a possible functional role and adaptive advantage for the presence of two periplasmic-binding proteins in ATP-binding cassette transport systems and a way bacteria can adapt to varying nutrient flux through functionalization of gene duplicates.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Duplicação Gênica , Thermotoga maritima/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Calorimetria , Celobiose/química , Celobiose/metabolismo , Dicroísmo Circular , Sequência Conservada , Cristalografia por Raios X , Fluorescência , Cinética , Ligantes , Manose/química , Manose/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Filogenia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Thermotoga maritima/metabolismo
3.
Inorg Chem ; 53(9): 4295-302, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24735396

RESUMO

HIV-1 virion infectivity factor (Vif) is an accessory protein that induces the proteasomal degradation of the host restriction factor, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G). Degradation of APOBEC3G requires the interaction of Vif with Cul5, the scaffold for an E3 ubiquitin ligase. A highly conserved region in HIV-1 Vif termed the HCCH motif binds zinc and is critical for recruitment of Cul5 and degradation of APOBEC3G. To gain thermodynamic and mechanistic insight into zinc binding to diverse Vif proteins, we have employed a combination of isothermal titration calorimetry, analytical ultracentrifugation, and Cul5 pull down assays. The proton linkage of zinc binding to HIV-1 Vif was analyzed under different buffer conditions and consistent with the release of two Cys-thiol protons upon zinc binding, supporting earlier EXAFS studies. Zinc binding to Vif proteins from HIV-1, SIVAgm, HIV-2, and SIVMac followed a trend in which the enthalpy of zinc binding became less favorable and the entropy of zinc binding became more favorable. Using AUC, we determined that zinc induced oligomerization of Vif proteins from HIV-1 and SIVAgm but had little or no effect on the oligomeric properties of Vif proteins from HIV-2 and SIVMac. The zinc dependence of Cul5 recruitment by Vif was investigated. All Vif proteins except HIV-2 Vif required zinc to stabilize the interaction with Cul5. The trends in enthalpy-entropy compensation, zinc-induced oligomerization, and Cul5 recruitment are discussed in terms of the apo conformation of the HCCH motif and the role of zinc in stabilizing the structure of Vif.


Assuntos
Cisteína/metabolismo , Histidina/metabolismo , Termodinâmica , Zinco/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Ultracentrifugação , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química
4.
BMC Struct Biol ; 13: 18, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24090243

RESUMO

BACKGROUND: Members of the periplasmic binding protein (PBP) superfamily utilize a highly conserved inter-domain ligand binding site that adapts to specifically bind a chemically diverse range of ligands. This paradigm of PBP ligand binding specificity was recently altered when the structure of the Thermotoga maritima cellobiose-binding protein (tmCBP) was solved. The tmCBP binding site is bipartite, comprising a canonical solvent-excluded region (subsite one), adjacent to a solvent-filled cavity (subsite two) where specific and semi-specific ligand recognition occur, respectively. RESULTS: A molecular level understanding of binding pocket adaptation mechanisms that simultaneously allow both ligand specificity at subsite one and promiscuity at subsite two has potentially important implications in ligand binding and drug design studies. We sought to investigate the determinants of ligand binding selectivity in tmCBP through biophysical characterization of tmCBP in the presence of varying ß-glucan oligosaccharides. Crystal structures show that whilst the amino acids that comprise both the tmCBP subsite one and subsite two binding sites remain fixed in conformation regardless of which ligands are present, the rich hydrogen bonding potential of water molecules may facilitate the ordering and the plasticity of this unique PBP binding site. CONCLUSIONS: The identification of the roles these water molecules play in ligand recognition suggests potential mechanisms that can be utilized to adapt a single ligand binding site to recognize multiple distinct ligands.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Lectinas/química , Lectinas/metabolismo , Thermotoga maritima/metabolismo , beta-Glucanas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Celulose/análogos & derivados , Celulose/química , Dicroísmo Circular , Cristalografia por Raios X , Dextrinas/química , Glucanos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Polissacarídeos/química , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato , beta-Glucanas/química
5.
Nat Commun ; 14(1): 4177, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443112

RESUMO

Targeted protein degradation via "hijacking" of the ubiquitin-proteasome system using proteolysis targeting chimeras (PROTACs) has evolved into a novel therapeutic modality. The design of PROTACs is challenging; multiple steps involved in PROTAC-induced degradation make it difficult to establish coherent structure-activity relationships. Herein, we characterize PROTAC-mediated ternary complex formation and degradation by employing von Hippel-Lindau protein (VHL) recruiting PROTACs for two different target proteins, SMARCA2 and BRD4. Ternary-complex attributes and degradation activity parameters are evaluated by varying components of the PROTAC's architecture. Ternary complex binding affinity and cooperativity correlates well with degradation potency and initial rates of degradation. Additionally, we develop a ternary-complex structure modeling workflow to calculate the total buried surface area at the interface, which is in agreement with the measured ternary complex binding affinity. Our findings establish a predictive framework to guide the design of potent degraders.


Assuntos
Proteínas Nucleares , Ubiquitina-Proteína Ligases , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação
6.
MAbs ; 15(1): 2256745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37698932

RESUMO

Biologic drug discovery pipelines are designed to deliver protein therapeutics that have exquisite functional potency and selectivity while also manifesting biophysical characteristics suitable for manufacturing, storage, and convenient administration to patients. The ability to use computational methods to predict biophysical properties from protein sequence, potentially in combination with high throughput assays, could decrease timelines and increase the success rates for therapeutic developability engineering by eliminating lengthy and expensive cycles of recombinant protein production and testing. To support development of high-quality predictive models for antibody developability, we designed a sequence-diverse panel of 83 effector functionless IgG1 antibodies displaying a range of biophysical properties, produced and formulated each protein under standard platform conditions, and collected a comprehensive package of analytical data, including in vitro assays and in vivo mouse pharmacokinetics. We used this robust training data set to build machine learning classifier models that can predict complex protein behavior from these data and features derived from predicted and/or experimental structures. Our models predict with 87% accuracy whether viscosity at 150 mg/mL is above or below a threshold of 15 centipoise (cP) and with 75% accuracy whether the area under the plasma drug concentration-time curve (AUC0-672 h) in normal mouse is above or below a threshold of 3.9 × 106 h x ng/mL.


Assuntos
Anticorpos Monoclonais , Descoberta de Drogas , Animais , Camundongos , Anticorpos Monoclonais/química , Simulação por Computador , Proteínas Recombinantes , Viscosidade
7.
Elife ; 92020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32149605

RESUMO

Transient receptor potential canonical (TRPC) proteins form nonselective cation channels that play physiological roles in a wide variety of cells. Despite growing evidence supporting the therapeutic potential of TRPC6 inhibition in treating pathological cardiac and renal conditions, mechanistic understanding of TRPC6 function and modulation remains obscure. Here we report cryo-EM structures of TRPC6 in both antagonist-bound and agonist-bound states. The structures reveal two novel recognition sites for the small-molecule modulators corroborated by mutagenesis data. The antagonist binds to a cytoplasm-facing pocket formed by S1-S4 and the TRP helix, whereas the agonist wedges at the subunit interface between S6 and the pore helix. Conformational changes upon ligand binding illuminate a mechanistic rationale for understanding TRPC6 modulation. Furthermore, structural and mutagenesis analyses suggest several disease-related mutations enhance channel activity by disrupting interfacial interactions. Our results provide principles of drug action that may facilitate future design of small molecules to ameliorate TRPC6-mediated diseases.


Assuntos
Bloqueadores dos Canais de Cálcio/metabolismo , Diglicerídeos/metabolismo , Canal de Cátion TRPC6/química , Sítios de Ligação , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Microscopia Crioeletrônica , Diglicerídeos/química , Diglicerídeos/farmacologia , Glomerulosclerose Segmentar e Focal/genética , Humanos , Ligantes , Modelos Moleculares , Mutação , Conformação Proteica , Domínios Proteicos , Canal de Cátion TRPC6/agonistas , Canal de Cátion TRPC6/antagonistas & inibidores , Canal de Cátion TRPC6/metabolismo
8.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 3): 171-175, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30839291

RESUMO

The Fenna-Matthews-Olson protein from Prosthecochloris aestuarii (PaFMO) has been crystallized in a new form that is amenable to high-resolution X-ray and neutron analysis. The crystals belonged to space group H3, with unit-cell parameters a = b = 83.64, c = 294.78 Å, and diffracted X-rays to ∼1.7 Šresolution at room temperature. Large PaFMO crystals grown to volumes of 0.3-0.5 mm3 diffracted neutrons to 2.2 Šresolution on the MaNDi neutron diffractometer at the Spallation Neutron Source. The resolution of the neutron data will allow direct determination of the positions of H atoms in the structure, which are believed to be fundamentally important in tuning the individual excitation energies of bacteriochlorophylls in this archetypal photosynthetic antenna complex. This is one of the largest unit-cell systems yet studied using neutron diffraction, and will allow the first high-resolution neutron analysis of a photosynthetic antenna complex.


Assuntos
Chlorobi/química , Complexos de Proteínas Captadores de Luz/química , Difração de Nêutrons/métodos , Fotossíntese , Difração de Raios X/métodos , Chlorobi/fisiologia , Conformação Proteica
9.
Curr Opin Chem Biol ; 15(2): 312-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21288761

RESUMO

Protein controlled iron homeostasis is essential for maintaining appropriate levels and availability of metal within cells. Recently, two iron chaperones have been discovered that direct metal within two unique pathways: (1) mitochondrial iron-sulfur (Fe-S) cluster assembly and (2) within the ferritin iron storage system. Although structural and functional details describing how these iron chaperones operate are emerging, both share similar iron binding affinities and metal-ligand site structures that enable them to bind and release Fe2+ to specific protein partners. Molecular details related to iron binding and delivery by these chaperones will be explored within this review.


Assuntos
Ferritinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Humanos , Modelos Moleculares
10.
Cell Metab ; 14(5): 647-57, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22055506

RESUMO

Mammalian cells express dozens of iron-containing proteins, yet little is known about the mechanism of metal ligand incorporation. Human poly (rC) binding protein 1 (PCBP1) is an iron chaperone that binds iron and delivers it to ferritin, a cytosolic iron storage protein. We have identified the iron-dependent prolyl hydroxylases (PHDs) and asparaginyl hydroxylase (FIH1) that modify hypoxia-inducible factor α (HIFα) as targets of PCBP1. Depletion of PCBP1 or PCBP2 in cells led to loss of PHD activity, manifested by reduced prolyl hydroxylation of HIF1α, impaired degradation of HIF1α through the VHL/proteasome pathway, and accumulation of active HIF1 transcription factor. PHD activity was restored in vitro by addition of excess Fe(II), or purified Fe-PCBP1, and PCBP1 bound to PHD2 and FIH1 in vivo. These data indicated that PCBP1 was required for iron incorporation into PHD and suggest a broad role for PCBP1 and 2 in delivering iron to cytosolic nonheme iron enzymes.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transporte de Íons/fisiologia , Ferro/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular , Proteínas de Ligação a DNA , Ativação Enzimática , Ferritinas/metabolismo , Expressão Gênica , Genes Reporter , Meia-Vida , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Hidroxilação , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Luciferases/análise , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA