Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38343839

RESUMO

Anhedonia is a core aspect of major depressive disorder. Traditionally viewed as a blunted emotional state in which individuals are unable to experience joy, anhedonia also diminishes the drive to seek rewards and the ability to value and learn about them 1-4.The neural underpinnings of anhedonia and how this emotional state drives related behavioral changes remain unclear. Here, we investigated these questions by taking advantage of the fact that when mice are exposed to traumatic social stress, susceptible animals become socially withdrawn and anhedonic, where they cease to seek high-value rewards, while others remain resilient. By performing high density electrophysiological recordings and comparing neural activity patterns of these groups in the basolateral amygdala (BLA) and ventral CA1 (vCA1) of awake behaving animals, we identified neural signatures of susceptibility and resilience to anhedonia. When animals actively sought rewards, BLA activity in resilient mice showed stronger discrimination between upcoming reward choices. In contrast, susceptible mice displayed a rumination-like signature, where BLA neurons encoded the intention to switch or stay on a previously chosen reward. When animals were at rest, the spontaneous BLA activity of susceptible mice was higher dimensional than in controls, reflecting a greater number of distinct neural population states. Notably, this spontaneous activity allowed us to decode group identity and to infer if a mouse had a history of stress better than behavioral outcomes alone. Finally, targeted manipulation of vCA1 inputs to the BLA in susceptible mice rescued dysfunctional neural dynamics, amplified dynamics associated with resilience, and reversed their anhedonic behavior. This work reveals population-level neural signatures that explain individual differences in responses to traumatic stress, and suggests that modulating vCA1-BLA inputs can enhance resilience by regulating these dynamics.

2.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961124

RESUMO

The neural dynamics that underlie divergent anhedonic responses to stress remain unclear. Here, we identified neuronal dynamics in an amygdala-hippocampal circuit that distinguish stress resilience and susceptibility. In a reward-choice task, basolateral amygdala (BLA) activity in resilient mice showed enhanced discrimination of upcoming reward choices. In contrast, a rumination-like signature emerged in the BLA of susceptible mice; a linear decoder could classify the intention to switch or stay on a previously chosen reward. Spontaneous activity in the BLA of susceptible mice was higher dimensional than controls, reflecting the exploration of a larger number of distinct neural states. Manipulation of vCA1-BLA inputs rescued dysfunctional neural dynamics and anhedonia in susceptible mice, suggesting that targeting this pathway can enhance BLA circuit function and ameliorate of depression-related behaviors.

3.
Science ; 368(6489): 413-417, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32327595

RESUMO

Heterogeneous transcriptional start site usage by HIV-1 produces 5'-capped RNAs beginning with one, two, or three 5'-guanosines (Cap1G, Cap2G, or Cap3G, respectively) that are either selected for packaging as genomes (Cap1G) or retained in cells as translatable messenger RNAs (mRNAs) (Cap2G and Cap3G). To understand how 5'-guanosine number influences fate, we probed the structures of capped HIV-1 leader RNAs by deuterium-edited nuclear magnetic resonance. The Cap1G transcript adopts a dimeric multihairpin structure that sequesters the cap, inhibits interactions with eukaryotic translation initiation factor 4E, and resists decapping. The Cap2G and Cap3G transcripts adopt an alternate structure with an elongated central helix, exposed splice donor residues, and an accessible cap. Extensive remodeling, achieved at the energetic cost of a G-C base pair, explains how a single 5'-guanosine modifies the function of a ~9-kilobase HIV-1 transcript.


Assuntos
Pareamento de Bases , Regulação Viral da Expressão Gênica , HIV-1/genética , Capuzes de RNA/genética , RNA Viral/genética , Sítio de Iniciação de Transcrição , Regiões 5' não Traduzidas/genética , Composição de Bases , Fator de Iniciação 4E em Eucariotos/metabolismo , Guanosina/química , Humanos , Ressonância Magnética Nuclear Biomolecular , Biossíntese de Proteínas , Capuzes de RNA/química , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA