Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(19): 8907-8913, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37772726

RESUMO

Proteins are versatile, self-assembling nanoelectronic components, but their hopping conductivity is expected to be influenced by solvent fluctuations. The role of the solvent was investigated by measuring the single molecule conductance of several proteins in both H2O and D2O. The conductance of a homologous series of protein wires decreases more rapidly with length in D2O, indicating a 6-fold decrease in carrier diffusion constant relative to the same protein in H2O. The effect was found to depend on the specific aromatic amino acid composition. A tryptophan zipper protein showed a decrease in conductance similar to that of the protein wires, whereas a phenylalanine zipper protein was insensitive to solvent changes. Tryptophan contains an indole amine, whereas the phenylalanine aromatic ring has no exchangeable protons, so the effect of heavy water on conductance is a consequence of specific D- or H-interactions with the aromatic residues.


Assuntos
Proteínas , Triptofano , Óxido de Deutério , Deutério/química , Triptofano/química , Proteínas/química , Fenilalanina/química , Prótons , Solventes
2.
Chemistry ; 26(28): 6240-6246, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32201996

RESUMO

Hybrid protein-organometallic catalysts are being explored for selective catalysis of a number of reactions, because they utilize the complementary strengths of proteins and of organometallic complex. Herein, we present an artificial hydrogenase, StrepH2, built by incorporating a biotinylated [Fe-Fe] hydrogenase organometallic mimic within streptavidin. This strategy takes advantage of the remarkable strength and specificity of biotin-streptavidin recognition, which drives quantitative incorporation of the biotinylated diironhexacarbonyl center into streptavidin, as confirmed by UV/Vis spectroscopy and X-ray crystallography. FTIR spectra of StrepH2 show characteristic peaks at shift values indicative of interactions between the catalyst and the protein scaffold. StrepH2 catalyzes proton reduction to hydrogen in aqueous media during photo- and electrocatalysis. Under photocatalytic conditions, the protein-embedded catalyst shows enhanced efficiency and prolonged activity compared to the isolated catalyst. Transient absorption spectroscopy data suggest a mechanism for the observed increase in activity underpinned by an observed longer lifetime for the catalytic species FeI Fe0 when incorporated within streptavidin compared to the biotinylated catalyst in solution.

3.
Biopolymers ; 109(10): e23233, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30191549

RESUMO

Protein-based self-assembled nanostructures hold tremendous promise as smart materials. One strategy to control the assembly of individual protein modules takes advantage of the directionality and high affinity bonding afforded by metal chelation. Here, we describe the use of 2,2'-bipyridine units (Bpy) as side chains to template the assembly of large structures (MW approx. 35 000 Da) in a metal-dependent manner. The structures are trimers of independently folded 3-helix bundles, and are held together by 2 Me(Bpy)3 complexes. The assemblies are stable to thermal denaturation, and are more than 90% helical at 90°C. Circular dichroism spectroscopy shows that one of the 2 possible (Bpy)3 enantiomers is favored over the other. Because of the sequence pliability of the starting peptides, these constructs could find use to organize functional groups at controlled positions within a supramolecular assembly.


Assuntos
Quelantes/química , Metais/química , Multimerização Proteica , Proteínas/química , Proteínas/síntese química , Sequência de Aminoácidos , Estabilidade Proteica
4.
Biochim Biophys Acta Bioenerg ; 1858(12): 945-954, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28882760

RESUMO

To better understand metalloproteins with Mn-clusters, we have designed artificial four-helix bundles to have one, two, or three dinuclear metal centers able to bind Mn(II). Circular dichroism measurements showed that the Mn-proteins have substantial α-helix content, and analysis of electron paramagnetic resonance spectra is consistent with the designed number of bound Mn-clusters. The Mn-proteins were shown to catalyze the conversion of hydrogen peroxide into molecular oxygen. The loss of hydrogen peroxide was dependent upon the concentration of protein with bound Mn, with the proteins containing multiple Mn-clusters showing greater activity. Using an oxygen sensor, the oxygen concentration was found to increase with a rate up to 0.4µM/min, which was dependent upon the concentrations of hydrogen peroxide and the Mn-protein. In addition, the Mn-proteins were shown to serve as electron donors to bacterial reaction centers using optical spectroscopy. Similar binding of the Mn-proteins to reaction centers was observed with an average dissociation constant of 2.3µM. The Mn-proteins with three metal centers were more effective at this electron transfer reaction than the Mn-proteins with one or two metal centers. Thus, multiple Mn-clusters can be incorporated into four-helix bundles with the capability of performing catalysis and electron transfer to a natural protein.


Assuntos
Manganês/química , Metaloproteínas/química , Oxigênio/química , Conformação Proteica em alfa-Hélice , Sítios de Ligação , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Metaloproteínas/síntese química , Metaloproteínas/metabolismo , Modelos Moleculares , Ligação Proteica
5.
Biochim Biophys Acta ; 1857(5): 539-547, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26392146

RESUMO

A compelling target for the design of electron transfer proteins with novel cofactors is to create a model for the oxygen-evolving complex, a Mn4Ca cluster, of photosystem II. A mononuclear Mn cofactor can be added to the bacterial reaction center, but the addition of multiple metal centers is constrained by the native protein architecture. Alternatively, metal centers can be incorporated into artificial proteins. Designs for the addition of dinuclear metal centers to four-helix bundles resulted in three artificial proteins with ligands for one, two, or three dinuclear metal centers able to bind Mn. The three-dimensional structure determined by X-ray crystallography of one of the Mn-proteins confirmed the design features and revealed details concerning coordination of the Mn center. Electron transfer between these artificial Mn-proteins and bacterial reaction centers was investigated using optical spectroscopy. After formation of a light-induced, charge-separated state, the experiments showed that the Mn-proteins can donate an electron to the oxidized bacteriochlorophyll dimer of modified reaction centers, with the Mn-proteins having additional metal centers being more effective at this electron transfer reaction. Modeling of the structure of the Mn-protein docked to the reaction center showed that the artificial protein likely binds on the periplasmic surface similarly to cytochrome c2, the natural secondary donor. Combining reaction centers with exogenous artificial proteins provides the opportunity to create ligands and investigate the influence of inhomogeneous protein environments on multinuclear redox-active metal centers. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.


Assuntos
Proteínas de Bactérias/química , Manganês/metabolismo , Metaloproteínas/química , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Coenzimas/química , Coenzimas/genética , Coenzimas/metabolismo , Humanos , Manganês/química , Metaloproteínas/genética , Metaloproteínas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína
6.
Biochim Biophys Acta ; 1857(5): 598-603, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26375327

RESUMO

Bioinspired, protein-based molecular catalysts utilizing base metals at the active are emerging as a promising avenue to sustainable hydrogen production. The protein matrix modulates the intrinsic reactivity of organometallic active sites by tuning second-sphere and long-range interactions. Here, we show that swapping Co-Protoporphyrin IX for Fe-Protoporphyrin IX in cytochrome b562 results in an efficient catalyst for photoinduced proton reduction to molecular hydrogen. Further, the activity of wild type Co-cyt b562 can be modulated by a factor of 2.5 by exchanging the coordinating methionine with alanine or aspartic acid. The observed turnover numbers (TON) range between 125 and 305, and correlate well with the redox potential of the Co-cyt b562 mutants. The photosensitized system catalyzes proton reduction with high efficiency even under an aerobic atmosphere, implicating its use for biotechnological applications. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.


Assuntos
Grupo dos Citocromos b , Proteínas de Escherichia coli , Hidrogênio/metabolismo , Engenharia de Proteínas/métodos , Catálise , Domínio Catalítico/genética , Cobalto/química , Cobalto/metabolismo , Grupo dos Citocromos b/química , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Citocromos c/química , Citocromos c/genética , Citocromos c/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrogenase/química , Hidrogenase/genética , Hidrogenase/metabolismo , Ferro/química , Ferro/metabolismo , Modelos Moleculares , Mutagênese , Ligação Proteica/genética , Protoporfirinas/química , Protoporfirinas/metabolismo , Biologia Sintética/métodos
7.
Adv Exp Med Biol ; 940: 215-243, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27677515

RESUMO

In nature, the majority of processes that occur in the cell involve the cycling of electrons and protons, changing the reduction and oxidation state of substrates to alter their chemical reactivity and usefulness in vivo. One of the most relevant examples of these processes is the electron transport chain, a series of oxidoreductase proteins that shuttle electrons through well-defined pathways, concurrently moving protons across the cell membrane. Inspired by these processes, researchers have sought to develop materials to mimic natural systems for a number of applications, including fuel production. The most common cofactors found in proteins to carry out electron transfer are iron sulfur clusters and porphyrin-like molecules. Both types have been studied within natural proteins, such as in photosynthetic machinery or soluble electron carriers; in parallel, an extensive literature has developed over recent years attempting to model and study these cofactors within peptide-based materials. This chapter will focus on major designs that have significantly advanced the field.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Peptídeos/química , Porfirinas/química , Engenharia de Proteínas/métodos , Prótons , Transporte de Elétrons , Oxirredução
8.
Biophys J ; 109(5): 1038-48, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26331261

RESUMO

We provide the first direct experimental comparison, to our knowledge, between the internal dynamics of calcitonin-gene-related peptide (CGRP) and amylin (islet amyloid polypeptide, IAPP), two intrinsically disordered proteins of the calcitonin peptide family. Our end-to-end contact formation measurements reveal that in aqueous solution (i.e., in the absence of structure-inducing organic solvents) CGRP preferentially populates conformations with short end-to-end distances. However, the end-to-end distance of CGRP is larger than that of IAPP. We find that electrostatic interactions can account for such a difference. At variance with previous reports on the secondary structure of CGRP, we find that the end-to-end distance of the peptide increases with decreasing pH and salt concentration, due to Coulomb repulsion by charged residues. Interestingly, our data show that the reconfiguration dynamics of CGRP is significantly slower than that of human IAPP in water but not in denaturant, providing experimental evidence for roughness in the energy landscape, or internal friction, in these peptides. The data reported here provide both structural and dynamical information that can be used to validate results from molecular simulations of calcitonin family peptides in aqueous solution.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/química , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Eletricidade Estática
9.
Biochemistry ; 54(46): 6951-60, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26507789

RESUMO

Mutations in the hinge region of cyanovirin-N (CVN) dictate its preferential oligomerization state. Constructs with the Pro51Gly mutation preferentially exist as monomers, whereas wild-type cyanovirin can form domain-swapped dimers under certain conditions. Because the hinge region is an integral part of the high-affinity binding site of CVN, we investigated whether this mutation affects the shape, flexibility, and binding affinity of domain B for dimannose. Our studies indicate that the capability of monomeric wild-type CVN to resist mechanical perturbations is enhanced when compared to that of constructs in which the hinge region is more flexible. Our computational results also show that enhanced flexibility leads to blocking of the binding site by allowing different rotational isomeric states of Asn53. Moreover, at higher temperatures, this observed flexibility leads to an interaction between Asn53 and Asn42, further hindering access to the binding site. On the basis of these results, we predicted that binding affinity for dimannose would be more favorable for cyanovirin constructs containing a wild-type hinge region, whereas affinity would be impaired in the case of mutants containing Pro51Gly. Experimental characterization by isothermal titration calorimetry of a set of cyanovirin mutants confirms this hypothesis. Those possessing the Pro51Gly mutation are consistently inferior binders.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Dissacarídeos/metabolismo , Lectinas de Ligação a Manose/química , Lectinas de Ligação a Manose/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Transporte/genética , Lectinas de Ligação a Manose/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
10.
Biopolymers ; 104(4): 412-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25808361

RESUMO

iron-sulfur cluster binding proteins perform an astounding variety of functions, and represent one of the most abundant classes of metalloproteins. Most often, they constitute pairs or chains and act as electron transfer modules either within complex redox enzymes or within small diffusible proteins. We have previously described the design of a three-helix bundle that can bind two clusters within its hydrophobic core. Here, we use single-point mutations to exchange one of the Cys ligands coordinating the cluster to either Leu or Ser. We show that the mutants modulate the redox potential of the clusters and stabilize the [3Fe-4S] form over the [4Fe-4S] form, supporting the use of model iron-sulfur cluster proteins as modules in the design of complex redox enzymes.


Assuntos
Proteínas Ferro-Enxofre/química , Ferro/química , Peptídeos/química , Enxofre/química , Transporte de Elétrons
11.
Biophys J ; 106(5): 1142-51, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24606938

RESUMO

Cyanovirin-N (CVN), a cyanobacterial lectin, exemplifies a class of antiviral agents that inhibit HIV by binding to the highly glycosylated envelope protein gp120. Here, we investigate the energetics of glycan recognition using a computationally inexpensive flexible docking approach, backbone perturbation docking (BP-Dock). We benchmarked our method using two mutants of CVN: P51G-m4-CVN, which binds dimannose with high affinity through domain B, and CVN((mutDB)), in which binding to domain B has been abolished through mutation of five polar residues to small nonpolar side chains. We investigated the energetic contribution of these polar residues along with the additional position 53 by docking dimannose to single-point CVN mutant models. Analysis of the docking simulations indicated that the E41A/G and T57A mutations led to a significant decrease in binding energy scores due to rearrangements of the hydrogen-bond network that reverberated throughout the binding cavity. N42A decreased the binding score to a level comparable to that of CVN((mutDB)) by affecting the integrity of the local protein structure. In contrast, N53S resulted in a high binding energy score, similar to P51G-m4-CVN. Experimental characterization of the five mutants by NMR spectroscopy confirmed the binding affinity pattern predicted by BP-Dock. Despite their mostly conserved fold and stability, E41A, E41G, and T57A displayed dissociation constants in the millimolar range. N53S showed a binding constant in the low micromolar range, similar to that observed for P51G-m4-CVN. No binding was observed for N42A. Our results show that BP-Dock is a useful tool for rapidly screening the relative binding affinity pattern of in silico-designed mutants compared with wild-type, supporting its use to design novel mutants with enhanced binding properties.


Assuntos
Fármacos Anti-HIV/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Simulação de Acoplamento Molecular , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Fármacos Anti-HIV/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Dados de Sequência Molecular , Mutação Puntual , Estrutura Terciária de Proteína , Especificidade por Substrato , Termodinâmica
12.
J Am Chem Soc ; 136(29): 10198-201, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24992489

RESUMO

The utilization of solar energy requires an efficient means for its storage as chemical energy. In bioinspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are needed to avoid excessive driving potentials. In this paper, we demonstrate the utility of a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V at a current density of 1 mA/cm(2) at pH 11. Catalysis requires the presence of the amine moiety with the glycine most likely coordinating the Ni in a 4:1 molar ratio. The production of molecular oxygen at a high potential is verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. The catalytic species is most likely a heterogeneous Ni-hydroxide formed by electrochemical oxidation. This Ni species can achieve a current density of 4 mA/cm(2) that persists for at least 10 h. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalytic mechanism is an electron-proton coupled process.


Assuntos
Glicina/química , Luz , Níquel/química , Água/química , Catálise , Eletroquímica , Concentração de Íons de Hidrogênio , Oxirredução , Processos Fotoquímicos
13.
J Am Chem Soc ; 136(49): 17343-9, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25437708

RESUMO

[Fe-S] clusters, nature's modular electron transfer units, are often arranged in chains that support long-range electron transfer. Despite considerable interest, the design of biomimetic artificial systems emulating multicluster-binding proteins, with the final goal of integrating them in man-made oxidoreductases, remains elusive. Here, we report a novel bis-[4Fe-4S] cluster binding protein, DSD-Fdm, in which the two clusters are positioned within a distance of 12 Å, compatible with the electronic coupling necessary for efficient electron transfer. The design exploits the structural repeat of coiled coils as well as the symmetry of the starting scaffold, a homodimeric helical protein (DSD). In total, eight hydrophobic residues in the core of DSD were replaced by eight cysteine residues that serve as ligands to the [4Fe-4S] clusters. Incorporation of two [4Fe-4S] clusters proceeds with high yield. The two [4Fe-4S] clusters are located in the hydrophobic core of the helical bundle as characterized by various biophysical techniques. The secondary structure of the apo and holo proteins is conserved; further, the incorporation of clusters results in stabilization of the protein with respect to chemical denaturation. Most importantly, this de novo designed protein can mimic the function of natural ferredoxins: we show here that reduced DSD-Fdm transfers electrons to cytochrome c, thus generating the reduced cyt c stoichiometrically.


Assuntos
Ferredoxinas/química , Transporte de Elétrons , Ferredoxinas/síntese química , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica
14.
J Am Chem Soc ; 136(23): 8283-95, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24871902

RESUMO

Proteins have evolved to carry out nearly all the work required of living organisms within complex inter- and intracellular environments. However, systematically investigating the range of interactions experienced by a protein that influence its function remains challenging. DNA nanostructures are emerging as a convenient method to arrange a broad range of guest molecules. However, flexible methods are needed for arranging proteins in more biologically relevant 3D geometries under mild conditions that preserve protein function. Here we demonstrate how peptide nucleic acid (PNA) can be used to control the assembly of cytochrome c (12.5 kDa, pI 10.5) and azurin (13.9 kDa, pI 5.7) proteins into separate 3D DNA nanocages, in a process that maintains protein function. Toehold-mediated DNA strand displacement is introduced as a method to purify PNA-protein conjugates. The PNA-proteins were assembled within 2 min at room temperature and within 4 min at 11 °C, and hybridize with even greater efficiency than PNA conjugated to a short peptide. Gel electrophoresis and steady state and time-resolved fluorescence spectroscopy were used to investigate the effect of protein surface charge on its interaction with the negatively charged DNA nanocage. These data were used to generate a model of the DNA-PNA-protein complexes that show the negatively charged azurin protein repelled away from the DNA nanocage while the positively charged cytochrome c protein remains within and closely interacts with the DNA nanocage. When conjugated to PNA and incorporated into the DNA nanocage, the cytochrome c secondary structure and catalytic activity were maintained, and its redox potential was reduced modestly by 20 mV possibly due to neutralization of some positive surface charges. This work demonstrates a flexible new approach for using 3D nucleic acid (PNA-DNA) nanostructures to control the assembly of functional proteins, and facilitates further investigation of protein interactions as well as engineer more elaborate 3D protein complexes.


Assuntos
Azurina/química , Citocromos c/química , DNA/química , Nanoestruturas/química , Ácidos Nucleicos Peptídicos/química , Temperatura , Cromatografia em Gel , Modelos Moleculares , Espectrometria de Fluorescência
15.
Biopolymers ; 102(6): 437-43, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25250823

RESUMO

Specific helix-helix interactions underpin the correct assembly of multipass membrane proteins. Here, we show that a designed buried salt bridge mediates heterodimer formation of model transmembrane helical peptides in a pH-dependent manner. The model peptides bear side chains functionalized with either a carboxylic acid or a primary amine within a hydrophobic segment. The association behavior was monitored by Förster resonance energy transfer, revealing that heterodimer formation is maximized at a pH close to neutrality (pH 6.5), at which each peptide is found in a charged state. In contrast, heterodimerization is disfavored at low and high values of pH, because either the carboxylic acid or the primary amine is present in its neutral state, thus preventing the formation of a salt bridge. These findings provide a blueprint for the design and modulation of protein-protein interactions in membrane proteins.


Assuntos
Membrana Celular/química , Peptídeos/química , Multimerização Proteica , Sais/química , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Transferência Ressonante de Energia de Fluorescência , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Peptídeos/síntese química , Estrutura Secundária de Proteína
17.
Biophys J ; 105(7): 1661-9, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24094407

RESUMO

We report for the first time, to our knowledge, that the N-terminal loop (N_loop) of amylin (islet amyloid polypeptide (IAPP) residues 1-8) forms extremely long and stable non-ß-sheet fibers in solution under the same conditions in which human amylin (hIAPP) forms amyloid fibers. This observation applies to the cyclic, oxidized form of the N_loop but not to the linear, reduced form, which does not form fibers. Our findings indicate a potential role of direct N_loop-N_loop interactions in hIAPP aggregation, which has not been previously explored, with important implications for the mechanism of hIAPP amyloid fiber formation, the inhibitory action of IAPP variants, and the competition between ordered and disordered aggregation in peptides of the calcitonin peptide family.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polimerização , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Ratos
18.
Biochemistry ; 52(43): 7586-94, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24090184

RESUMO

In nature, protein subunits containing multiple iron-sulfur clusters often mediate the delivery of reducing equivalents from metabolic pathways to the active site of redox proteins. The de novo design of redox active proteins should include the engineering of a conduit for the delivery of electrons to and from the active site, in which multiple redox active centers are arranged in a controlled manner. Here, we describe a designed three-helix protein, DSD-bis[4Fe-4S], that coordinates two iron-sulfur clusters within its hydrophobic core. The design exploits the pseudo two-fold symmetry of the protein scaffold, DSD, which is a homodimeric three-helix bundle. Starting from the sequence of the parent peptide, we mutated eight leucine residues per dimer in the hydrophobic core to cysteine to provide the first coordination sphere for cubane-type iron-sulfur clusters. Incorporation of two clusters per dimer is readily achieved by in situ reconstitution and imparts increased stability to thermal denaturation compared to that of the apo form of the peptide as assessed by circular dichroism-monitored thermal denaturation. The presence of [4Fe-4S] clusters in intact proteins is confirmed by UV-vis spectroscopy, gel filtration, analytical ultracentrifugation, and electron paramagnetic resonance spectroscopy. Pulsed electron-electron double-resonance experiments have detected a magnetic dipole interaction between the two clusters ~0.7 MHz, which is consistent with the expected intercluster distance of 29-34 Å. Taken together, our data demonstrate the successful design of an artificial multi-iron-sulfur cluster protein with evidence of cluster-cluster interaction. The design principles implemented here can be extended to the design of multicluster molecular wires.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Apoproteínas/síntese química , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Dicroísmo Circular , Complexos de Coordenação , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Temperatura Alta/efeitos adversos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Ferro-Enxofre/síntese química , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Simulação de Acoplamento Molecular , Desnaturação Proteica , Engenharia de Proteínas , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Thermotoga maritima/enzimologia , Triptofano-tRNA Ligase/química , Triptofano-tRNA Ligase/metabolismo
19.
J Am Chem Soc ; 135(18): 6985-93, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521013

RESUMO

Proteins and peptides fold into dynamic structures that access a broad functional landscape; however, designing artificial polypeptide systems is still a great challenge. Conversely, DNA engineering is now routinely used to build a wide variety of 2D and 3D nanostructures from hybridization based rules, and their functional diversity can be significantly expanded through site specific incorporation of the appropriate guest molecules. Here we demonstrate a new approach to rationally design 3D nucleic acid-amino acid complexes using peptide nucleic acid (PNA) to assemble peptides inside a 3D DNA nanocage. The PNA-peptides were found to bind to the preassembled DNA nanocage in 5-10 min at room temperature, and assembly could be performed in a stepwise fashion. Biophysical characterization of the DNA-PNA-peptide complex was performed using gel electrophoresis as well as steady state and time-resolved fluorescence spectroscopy. Based on these results we have developed a model for the arrangement of the PNA-peptides inside the DNA nanocage. This work demonstrates a flexible new approach to leverage rationally designed nucleic acid (DNA-PNA) nanoscaffolds to guide polypeptide engineering.


Assuntos
DNA/química , Nanoestruturas/química , Ácidos Nucleicos Peptídicos/química , Peptídeos/química , Temperatura , Estrutura Molecular
20.
Biochem Soc Trans ; 41(5): 1170-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24059504

RESUMO

CVN (cyanovirin-N), a small lectin isolated from cyanobacteria, exemplifies a novel class of anti-HIV agents that act by binding to the highly glycosylated envelope protein gp120 (glycoprotein 120), resulting in inhibition of the crucial viral entry step. In the present review, we summarize recent work in our laboratory and others towards determining the crucial role of multivalency in the antiviral activity, and we discuss features that contribute to the high specificity and affinity for the glycan ligand observed in CVN. An integrated approach that encompasses structural determination, mutagenesis analysis and computational work holds particular promise to clarify aspects of the interactions between CVN and glycans.


Assuntos
Fármacos Anti-HIV/química , Proteínas de Bactérias/química , Proteínas de Bactérias/uso terapêutico , Proteínas de Transporte/química , Proteínas de Transporte/uso terapêutico , Infecções por HIV/tratamento farmacológico , Polissacarídeos/química , Sequência de Aminoácidos , Fármacos Anti-HIV/metabolismo , Sítios de Ligação , Cianobactérias/química , HIV/química , HIV/genética , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Lectinas/química , Lectinas/metabolismo , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA