Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 147(6): 1309-23, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22153075

RESUMO

During cell division, cells form the microtubule-based mitotic spindle, a highly specialized and dynamic structure that mediates proper chromosome transmission to daughter cells. Cancer cells can show perturbed mitotic spindles and an approach in cancer treatment has been to trigger cell killing by targeting microtubule dynamics or spindle assembly. To identify and characterize proteins necessary for spindle assembly, and potential antimitotic targets, we performed a proteomic and genetic analysis of 592 mitotic microtubule copurifying proteins (MMCPs). Screening for regulators that affect both mitosis and apoptosis, we report the identification and characterization of STARD9, a kinesin-3 family member, which localizes to centrosomes and stabilizes the pericentriolar material (PCM). STARD9-depleted cells have fragmented PCM, form multipolar spindles, activate the spindle assembly checkpoint (SAC), arrest in mitosis, and undergo apoptosis. Interestingly, STARD9-depletion synergizes with the chemotherapeutic agent taxol to increase mitotic death, demonstrating that STARD9 is a mitotic kinesin and a potential antimitotic target.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Proteínas dos Microtúbulos/análise , Microtúbulos/metabolismo , Mitose , Neoplasias/patologia , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Centríolos/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Neoplasias/metabolismo , Filogenia , Proteoma/análise , Alinhamento de Sequência , Fuso Acromático
2.
J Biol Chem ; 296: 100676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33865857

RESUMO

Human cell division is a highly regulated process that relies on the accurate capture and movement of chromosomes to the metaphase plate. Errors in the fidelity of chromosome congression and alignment can lead to improper chromosome segregation, which is correlated with aneuploidy and tumorigenesis. These processes are known to be regulated by extracellular signal-regulated kinase 2 (ERK2) in other species, but the role of ERK2 in mitosis in mammals remains unclear. Here, we have identified the dual-specificity phosphatase 7 (DUSP7), known to display selectivity for ERK2, as important in regulating chromosome alignment. During mitosis, DUSP7 bound to ERK2 and regulated the abundance of active phospho-ERK2 through its phosphatase activity. Overexpression of DUSP7, but not catalytically inactive mutants, led to a decrease in the levels of phospho-ERK2 and mitotic chromosome misalignment, while knockdown of DUSP7 also led to defective chromosome congression that resulted in a prolonged mitosis. Consistently, knockdown or chemical inhibition of ERK2 or chemical inhibition of the MEK kinase that phosphorylates ERK2 led to chromosome alignment defects. Our results support a model wherein MEK-mediated phosphorylation and DUSP7-mediated dephosphorylation regulate the levels of active phospho-ERK2 to promote proper cell division.


Assuntos
Cromossomos Humanos/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Mitose , Cromossomos Humanos/genética , Fosfatases de Especificidade Dupla/genética , Células HCT116 , Células HeLa , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Mutação , Fosforilação/genética
3.
J Proteome Res ; 20(7): 3414-3427, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34087075

RESUMO

The spindle assembly checkpoint (SAC) is critical for sensing defective microtubule-kinetochore attachments and tension across the kinetochore and functions to arrest cells in prometaphase to allow time to repair any errors before proceeding into anaphase. Dysregulation of the SAC leads to chromosome segregation errors that have been linked to human diseases like cancer. Although much has been learned about the composition of the SAC and the factors that regulate its activity, the proximity associations of core SAC components have not been explored in a systematic manner. Here, we have taken a BioID2-proximity-labeling proteomic approach to define the proximity protein environment for each of the five core SAC proteins BUB1, BUB3, BUBR1, MAD1L1, and MAD2L1 in mitotic-enriched populations of cells where the SAC is active. These five protein association maps were integrated to generate a SAC proximity protein network that contains multiple layers of information related to core SAC protein complexes, protein-protein interactions, and proximity associations. Our analysis validated many known SAC complexes and protein-protein interactions. Additionally, it uncovered new protein associations, including the ELYS-MAD1L1 interaction that we have validated, which lend insight into the functioning of core SAC proteins and highlight future areas of investigation to better understand the SAC.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático , Proteínas de Ciclo Celular/genética , Humanos , Cinetocoros , Proteínas Serina-Treonina Quinases/genética , Proteômica
4.
Biochemistry ; 59(32): 2916-2921, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32786404

RESUMO

Somatic mutations that perturb Parkin ubiquitin ligase activity and the misregulation of iron homeostasis have both been linked to Parkinson's disease. Lactotransferrin (LTF) is a member of the family of transferrin iron binding proteins that regulate iron homeostasis, and increased levels of LTF and its receptor have been observed in neurodegenerative disorders like Parkinson's disease. Here, we report that Parkin binds to LTF and ubiquitylates LTF to influence iron homeostasis. Parkin-dependent ubiquitylation of LTF occurred most often on lysines (K) 182 and 649. Substitution of K182 or K649 with alanine (K182A or K649A, respectively) led to a decrease in the level of LTF ubiquitylation, and substitution at both sites led to a major decrease in the level of LTF ubiquitylation. Importantly, Parkin-mediated ubiquitylation of LTF was critical for regulating intracellular iron levels as overexpression of LTF ubiquitylation site point mutants (K649A or K182A/K649A) led to an increase in intracellular iron levels measured by ICP-MS/MS. Consistently, RNAi-mediated depletion of Parkin led to an increase in intracellular iron levels in contrast to overexpression of Parkin that led to a decrease in intracellular iron levels. Together, these results indicate that Parkin binds to and ubiquitylates LTF to regulate intracellular iron levels. These results expand our understanding of the cellular processes that are perturbed when Parkin activity is disrupted and more broadly the mechanisms that contribute to Parkinson's disease.


Assuntos
Homeostase , Ferro/metabolismo , Lactoferrina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sítios de Ligação , Células HEK293 , Humanos , Lactoferrina/química , Modelos Moleculares , Conformação Proteica
5.
J Biol Chem ; 291(33): 17001-8, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27378817

RESUMO

The sterol regulatory element-binding protein (SREBP) transcription factors have become attractive targets for pharmacological inhibition in the treatment of metabolic diseases and cancer. SREBPs are critical for the production and metabolism of lipids and cholesterol, which are essential for cellular homeostasis and cell proliferation. Fatostatin was recently discovered as a specific inhibitor of SREBP cleavage-activating protein (SCAP), which is required for SREBP activation. Fatostatin possesses antitumor properties including the inhibition of cancer cell proliferation, invasion, and migration, and it arrests cancer cells in G2/M phase. Although Fatostatin has been viewed as an antitumor agent due to its inhibition of SREBP and its effect on lipid metabolism, we show that Fatostatin's anticancer properties can also be attributed to its inhibition of cell division. We analyzed the effect of SREBP activity inhibitors including Fatostatin, PF-429242, and Betulin on the cell cycle and determined that only Fatostatin possessed antimitotic properties. Fatostatin inhibited tubulin polymerization, arrested cells in mitosis, activated the spindle assembly checkpoint, and triggered mitotic catastrophe and reduced cell viability. Thus Fatostatin's ability to inhibit SREBP activity and cell division could prove beneficial in treating aggressive types of cancers such as glioblastomas that have elevated lipid metabolism and fast proliferation rates and often develop resistance to current anticancer therapies.


Assuntos
Divisão Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Neoplasias/metabolismo , Piridinas/farmacologia , Fuso Acromático/metabolismo , Tiazóis/farmacologia , Células HeLa , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas de Ligação a Elemento Regulador de Esterol/antagonistas & inibidores , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
6.
Mol Biol Cell ; 32(21): br9, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34432510

RESUMO

The elucidation of a protein's interaction/association network is important for defining its biological function. Mass spectrometry-based proteomic approaches have emerged as powerful tools for identifying protein-protein interactions (PPIs) and protein-protein associations (PPAs). However, interactome/association experiments are difficult to interpret, considering the complexity and abundance of data that are generated. Although tools have been developed to identify protein interactions/associations quantitatively, there is still a pressing need for easy-to-use tools that allow users to contextualize their results. To address this, we developed CANVS, a computational pipeline that cleans, analyzes, and visualizes mass spectrometry-based interactome/association data. CANVS is wrapped as an interactive Shiny dashboard with simple requirements, allowing users to interface easily with the pipeline, analyze complex experimental data, and create PPI/A networks. The application integrates systems biology databases such as BioGRID and CORUM to contextualize the results. Furthermore, CANVS features a Gene Ontology tool that allows users to identify relevant GO terms in their results and create visual networks with proteins associated with relevant GO terms. Overall, CANVS is an easy-to-use application that benefits all researchers, especially those who lack an established bioinformatic pipeline and are interested in studying interactome/association data.


Assuntos
Biologia Computacional/métodos , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas/métodos , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Processamento de Imagem Assistida por Computador/métodos , Proteínas , Proteômica , Software , Biologia de Sistemas
7.
Cytoskeleton (Hoboken) ; 78(2): 23-35, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33641240

RESUMO

Myosins are ATP-dependent actin-based molecular motors critical for diverse cellular processes like intracellular trafficking, cell motility, and cell invasion. During cell division, myosin MYO10 is important for proper mitotic spindle assembly, the anchoring of the spindle to the cortex, and positioning of the spindle to the cell mid-plane. However, myosins are regulated by myosin regulatory light chains (RLCs), and whether RLCs are important for cell division has remained unexplored. Here, we have determined that the previously uncharacterized myosin RLC Myl5 associates with the mitotic spindle and is required for cell division. We show that Myl5 localizes to the leading edge and filopodia during interphase and to mitotic spindle poles and spindle microtubules during early mitosis. Importantly, depletion of Myl5 led to defects in mitotic spindle assembly, chromosome congression, and chromosome segregation and to a slower transition through mitosis. Furthermore, Myl5 bound to MYO10 in vitro and co-localized with MYO10 at the spindle poles. These results suggest that Myl5 is important for cell division and that it may be performing its function through MYO10.


Assuntos
Cadeias Leves de Miosina , Fuso Acromático , Microtúbulos , Mitose , Polos do Fuso
8.
Endocrinology ; 160(8): 1926-1936, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31211356

RESUMO

Menin is the protein mutated in patients with multiple endocrine neoplasia type 1 (MEN1) syndrome and their corresponding sporadic tumor counterparts. We have found that menin functions in promoting proper cell division. Here, we show that menin localizes to the mitotic spindle poles and the mitotic spindle during early mitosis and to the intercellular bridge microtubules during cytokinesis in HeLa cells. In our study, menin depletion led to defects in spindle assembly and chromosome congression during early mitosis, lagging chromosomes during anaphase, defective cytokinesis, multinucleated interphase cells, and cell death. In addition, pharmacological inhibition of the menin-MLL1 interaction also led to similar cell division defects. These results indicate that menin and the menin-MLL1 interaction are important for proper cell division. These results highlight a function for menin in cell division and aid our understanding of how mutation and misregulation of menin promotes tumorigenesis.


Assuntos
Divisão Celular , Proteínas Proto-Oncogênicas/fisiologia , Fuso Acromático/fisiologia , Células HCT116 , Células HeLa , Histona-Lisina N-Metiltransferase/fisiologia , Humanos , Proteína de Leucina Linfoide-Mieloide/fisiologia , Proteínas Proto-Oncogênicas/genética
9.
ACS Chem Biol ; 14(5): 994-1001, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31046221

RESUMO

Targeting the leukemia proliferation cycle has been a successful approach to developing antileukemic therapies. However, drug screening efforts to identify novel antileukemic agents have been hampered by the lack of a suitable high-throughput screening platform for suspension cells that does not rely on flow-cytometry analyses. We report the development of a novel leukemia cell-based high-throughput chemical screening platform for the discovery of cell cycle phase specific inhibitors that utilizes chemical cell cycle profiling. We have used this approach to analyze the cell cycle response of acute lymphoblastic leukemia CCRF-CEM cells to each of 181420 druglike compounds. This approach yielded cell cycle phase specific inhibitors of leukemia cell proliferation. Further analyses of the top G2-phase and M-phase inhibitors identified the leukemia specific inhibitor 1 (Leusin-1). Leusin-1 arrests cells in G2 phase and triggers an apoptotic cell death. Most importantly, Leusin-1 was more active in acute lymphoblastic leukemia cells than other types of leukemias, non-blood cancers, or normal cells and represents a lead molecule for developing antileukemic drugs.


Assuntos
Antineoplásicos/farmacologia , Divisão Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Leucemia/patologia , Piridinas/farmacologia , Tiofenos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Descoberta de Drogas , Citometria de Fluxo , Humanos , Leucemia/metabolismo
10.
Neuro Oncol ; 20(6): 764-775, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29136244

RESUMO

Background: Clinical trials of therapies directed against nodes of the signaling axis of phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin (mTOR) in glioblastoma (GBM) have had disappointing results. Resistance to mTOR inhibitors limits their efficacy. Methods: To determine mechanisms of resistance to chronic mTOR inhibition, we performed tandem screens on patient-derived GBM cultures. Results: An unbiased phosphoproteomic screen quantified phosphorylation changes associated with chronic exposure to the mTOR inhibitor rapamycin, and our analysis implicated a role for glycogen synthase kinase (GSK)3B attenuation in mediating resistance that was confirmed by functional studies. A targeted short hairpin RNA screen and further functional studies both in vitro and in vivo demonstrated that microtubule-associated protein (MAP)1B, previously associated predominantly with neurons, is a downstream effector of GSK3B-mediated resistance. Furthermore, we provide evidence that chronic rapamycin induces microtubule stability in a MAP1B-dependent manner in GBM cells. Additional experiments explicate a signaling pathway wherein combinatorial extracellular signal-regulated kinase (ERK)/mTOR targeting abrogates inhibitory phosphorylation of GSK3B, leads to phosphorylation of MAP1B, and confers sensitization. Conclusions: These data portray a compensatory molecular signaling network that imparts resistance to chronic mTOR inhibition in primary, human GBM cell cultures and points toward new therapeutic strategies.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Interferente Pequeno/genética , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Sci Rep ; 7(1): 11261, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900159

RESUMO

Discovery of first-in-class medicines for treating cancer is limited by concerns with their toxicity and safety profiles, while repurposing known drugs for new anticancer indications has become a viable alternative. Here, we have developed a new approach that utilizes cell cycle arresting patterns as unique molecular signatures for prioritizing FDA-approved drugs with repurposing potential. As proof-of-principle, we conducted large-scale cell cycle profiling of 884 FDA-approved drugs. Using cell cycle indexes that measure changes in cell cycle profile patterns upon chemical perturbation, we identified 36 compounds that inhibited cancer cell viability including 6 compounds that were previously undescribed. Further cell cycle fingerprint analysis and 3D chemical structural similarity clustering identified unexpected FDA-approved drugs that induced DNA damage, including clinically relevant microtubule destabilizers, which was confirmed experimentally via cell-based assays. Our study shows that computational cell cycle profiling can be used as an approach for prioritizing FDA-approved drugs with repurposing potential, which could aid the development of cancer therapeutics.


Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Reposicionamento de Medicamentos/métodos , Linhagem Celular Tumoral , Biologia Computacional/métodos , Humanos
12.
Oncotarget ; 8(61): 104007-104021, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262617

RESUMO

Microtubule targeting drugs like taxanes, vinca alkaloids, and epothilones are widely-used and effective chemotherapeutic agents that target the dynamic instability of microtubules and inhibit spindle functioning. However, these drugs have limitations associated with their production, solubility, efficacy and unwanted toxicities, thus driving the need to identify novel antimitotic drugs that can be used as anticancer agents. We have discovered and characterized the Microtubins (Microtubule inhibitors), a novel class of small synthetic compounds, which target tubulin to inhibit microtubule polymerization, arrest cancer cells predominantly in mitosis, activate the spindle assembly checkpoint and trigger an apoptotic cell death. Importantly, the Microtubins do not compete for the known vinca or colchicine binding sites. Additionally, through chemical synthesis and structure-activity relationship studies, we have determined that specific modifications to the Microtubin phenyl ring can activate or inhibit its bioactivity. Combined, these data define the Microtubins as a novel class of compounds that inhibit cancer cell proliferation by perturbing microtubule polymerization and they could be used to develop novel cancer therapeutics.

13.
J Vis Exp ; (118)2016 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-28060263

RESUMO

Multi-protein complexes, rather than single proteins acting in isolation, often govern molecular pathways regulating cellular homeostasis. Based on this principle, the purification of critical proteins required for the functioning of these pathways along with their native interacting partners has not only allowed the mapping of the protein constituents of these pathways, but has also provided a deeper understanding of how these proteins coordinate to regulate these pathways. Within this context, understanding a protein's spatiotemporal localization and its protein-protein interaction network can aid in defining its role within a pathway, as well as how its misregulation may lead to disease pathogenesis. To address this need, several approaches for protein purification such as tandem affinity purification (TAP) and localization and affinity purification (LAP) have been designed and used successfully. Nevertheless, in order to apply these approaches to pathway-scale proteomic analyses, these strategies must be supplemented with modern technological developments in cloning and mammalian stable cell line generation. Here, we describe a method for generating LAP-tagged human inducible stable cell lines for investigating protein subcellular localization and protein-protein interaction networks. This approach has been successfully applied to the dissection of multiple cellular pathways including cell division and is compatible with high-throughput proteomic analyses.


Assuntos
Linhagem Celular , Cromatografia de Afinidade , Mapeamento de Interação de Proteínas , Animais , Vetores Genéticos , Humanos , Proteínas/química , Proteômica/métodos
14.
Cell Rep ; 14(2): 180-8, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26748699

RESUMO

Mid1 and Mid2 are ubiquitin ligases that regulate microtubule dynamics and whose mutation is associated with X-linked developmental disorders. We show that astrin, a microtubule-organizing protein, co-purifies with Mid1 and Mid2, has an overlapping localization with Mid1 and Mid2 at intercellular bridge microtubules, is ubiquitinated by Mid2 on lysine 409, and is degraded during cytokinesis. Mid2 depletion led to astrin stabilization during cytokinesis, cytokinetic defects, multinucleated cells, and cell death. Similarly, expression of a K409A mutant astrin in astrin-depleted cells led to the accumulation of K409A on intercellular bridge microtubules and an increase in cytokinetic defects, multinucleated cells, and cell death. These results indicate that Mid2 regulates cell division through the ubiquitination of astrin on K409, which is critical for its degradation and proper cytokinesis. These results could help explain how mutation of MID2 leads to misregulation of microtubule organization and the downstream disease pathology associated with X-linked intellectual disabilities.


Assuntos
Azul Alciano/metabolismo , Ligases/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fenazinas/metabolismo , Fenotiazinas/metabolismo , Resorcinóis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Divisão Celular , Citocinese , Humanos
15.
Mol Biol Cell ; 26(3): 440-52, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25501367

RESUMO

STARD9 is a largely uncharacterized mitotic kinesin and putative cancer target that is critical for regulating pericentriolar material cohesion during bipolar spindle assembly. To begin to understand the mechanisms regulating STARD9 function and their importance to cell division, we took a multidisciplinary approach to define the cis and trans factors that regulate the stability of the STARD9 motor domain. We show that, unlike the other ∼50 mammalian kinesins, STARD9 contains an insertion in loop 12 of its motor domain (MD). Working with the STARD9-MD, we show that it is phosphorylated in mitosis by mitotic kinases that include Plk1. These phosphorylation events are important for targeting a pool of STARD9-MD for ubiquitination by the SCFß-TrCP ubiquitin ligase and proteasome-dependent degradation. Of interest, overexpression of nonphosphorylatable/nondegradable STARD9-MD mutants leads to spindle assembly defects. Our results with STARD9-MD imply that in vivo the protein levels of full-length STARD9 could be regulated by Plk1 and SCFß-TrCP to promote proper mitotic spindle assembly.


Assuntos
Proteínas de Transporte/química , Proteínas de Ciclo Celular/metabolismo , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/fisiologia , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Humanos , Dados de Sequência Molecular , Fosforilação , Estrutura Terciária de Proteína , Proteínas Ligases SKP Culina F-Box/metabolismo , Fuso Acromático/ultraestrutura , Ubiquitinação , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Quinase 1 Polo-Like
16.
Cell Cycle ; 14(7): 1116-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25830415

RESUMO

Short-rib polydactyly syndromes (SRPS) arise from mutations in genes involved in retrograde intraflagellar transport (IFT) and basal body homeostasis, which are critical for cilia assembly and function. Recently, mutations in WDR34 or WDR60 (candidate dynein intermediate chains) were identified in SRPS. We have identified and characterized Tctex1d2, which associates with Wdr34, Wdr60 and other dynein complex 1 and 2 subunits. Tctex1d2 and Wdr60 localize to the base of the cilium and their depletion causes defects in ciliogenesis. We propose that Tctex1d2 is a novel dynein light chain important for trafficking to the cilium and potentially retrograde IFT and is a new molecular link to understanding SRPS pathology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Cílios/fisiologia , Dineínas/metabolismo , Proteínas do Citoesqueleto , Células HEK293 , Células HeLa , Humanos , Centro Organizador dos Microtúbulos/metabolismo , Mutação , Transporte Proteico , Síndrome de Costela Curta e Polidactilia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA