Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
ACS Chem Neurosci ; 9(5): 1014-1026, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29426225

RESUMO

The nematode Caenorhabditis elegans, with tractable genetics and a well-defined nervous system, provides a unique whole-animal model system to identify novel drug targets and therapies for neurodegenerative diseases. Large-scale drug or target screens in models that recapitulate the subtle age- and cell-specific aspects of neurodegenerative diseases are limited by a technological requirement for high-throughput analysis of neuronal morphology. Recently, we developed a single-copy model of amyloid precursor protein (SC_APP) induced neurodegeneration that exhibits progressive degeneration of select cholinergic neurons. Our previous work with this model suggests that small molecule ligands of the sigma 2 receptor (σ2R), which was recently cloned and identified as transmembrane protein 97 (TMEM97), are neuroprotective. To determine structure-activity relationships for unexplored chemical space in our σ2R/Tmem97 ligand collection, we developed an in vivo high-content screening (HCS) assay to identify potential drug leads. The HCS assay uses our recently developed large-scale microfluidic immobilization chip and automated imaging platform. We discovered norbenzomorphans that reduced neurodegeneration in our C. elegans model, including two compounds that demonstrated significant neuroprotective activity at multiple doses. These findings provide further evidence that σ2R/Tmem97-binding norbenzomorphans may represent a new drug class for treating neurodegenerative diseases.


Assuntos
Fatores Etários , Precursor de Proteína beta-Amiloide/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Neurônios/metabolismo , Animais , Caenorhabditis elegans , Modelos Animais de Doenças , Ligantes , Microfluídica/métodos , Doenças Neurodegenerativas/metabolismo , Relação Estrutura-Atividade
2.
Biotechnol Prog ; 23(4): 946-51, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17585775

RESUMO

We have developed a microfluidic platform modeled after the physiologic microcirculation for multiplexed tissue-like culture and high-throughput analysis. Each microfabricated culture unit consisted of three functional components: a 50 microm wide cell culture pocket, an artificial endothelial barrier with 2 microm pores, and a nutrient transport channel. This configuration enabled a high density of cancer cells to be maintained for over 1 week in a solid tumor-like morphology when fed with continuous flow. The microfluidic chip contained 16 parallel units for "flow cell" based experiments where live cells were exposed to a soluble factor and analyzed via fluorescence microscopy or flow-through biochemistry. Each fluidically independent tissue unit contained approximately 500 cells fed with a continuous flow of 10 nL/min. As a demonstration, the toxicity profile of the anti-cancer drug paclitaxel was collected on HeLa cells cultured in the microfluidic format and compared with a 384-well dish for up to 5 days of continuous drug exposure.


Assuntos
Técnicas Analíticas Microfluídicas , Antineoplásicos/farmacologia , Bioquímica/métodos , Biotecnologia/métodos , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Separação Celular , Relação Dose-Resposta a Droga , Desenho de Equipamento , Células HeLa , Humanos , Microfluídica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Fatores de Tempo
3.
Lab Chip ; 17(13): 2218-2224, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28573304

RESUMO

Dynamic cell stimulation is a powerful technique for probing gene networks and for applications in stem cell differentiation, immunomodulation and signaling. We developed a robust and flexible method and associated microfluidic devices to generate a wide-range of precisely formulated dynamic chemical signals to stimulate live cells and measure their dynamic response. This signal generator is capable of digital to analog conversion (DAC) through combinatoric selection of discrete input concentrations, and outperforms existing methods by both achievable resolution, dynamic range and simplicity in design. It requires no calibration, has minimal space requirements and can be easily integrated into microfluidic cell culture devices. The signal generator hardware and software we developed allows to choose the waveform, period and amplitude of chemical input signals and features addition of well-defined chemical noise to study the role of stochasticity in cellular information processing.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Análise de Célula Única/instrumentação , Animais , Linhagem Celular , Desenho de Equipamento , Corantes Fluorescentes/análise , Camundongos , Técnicas Analíticas Microfluídicas/métodos , Microscopia de Fluorescência , Análise de Célula Única/métodos
4.
Sci Rep ; 7(1): 9837, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852096

RESUMO

Several sophisticated microfluidic devices have recently been proposed for femtosecond laser axotomy in the nematode C. elegans for immobilization of the animals for surgery to overcome time-consuming and labor-intensive manual processes. However, nerve regeneration studies require long-term recovery of the animals and multiple imaging sessions to observe the regeneration capabilities of their axons post-injury. Here we present a simple, multi-trap device, consisting of a single PDMS (polydimethylsiloxane) layer, which can immobilize up to 20 animals at the favorable orientation for optical access needed for precise laser surgery and high-resolution imaging. The new device, named "worm hospital" allows us to perform the entire nerve regeneration studies, including on-chip axotomy, post-surgery housing for recovery, and post-recovery imaging all on one microfluidic chip. Utilizing the worm hospital and analysis of mutants, we observed that most but not all neurodevelopmental genes in the Wnt/Frizzled pathway are important for regeneration of the two touch receptor neurons ALM and PLM. Using our new chip, we observed that the cwn-2 and cfz-2 mutations significantly reduced the reconnection possibilities of both neurons without any significant reduction in the regrowth lengths of the severed axons. We observed a similar regeneration phenotype with cwn-1 mutation in ALM neurons only.


Assuntos
Caenorhabditis elegans/fisiologia , Técnicas Analíticas Microfluídicas , Microfluídica , Regeneração Nervosa , Animais , Axônios/fisiologia , Polaridade Celular/genética , Imunofluorescência , Neurônios/fisiologia
5.
Nat Commun ; 7: 13023, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725672

RESUMO

Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ∼4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ∼100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ∼1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.


Assuntos
Caenorhabditis elegans/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Microfluídica/métodos , Modelos Biológicos , Peptídeos/química , Agregados Proteicos , Animais , Automação , Modelos Animais de Doenças , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Imageamento Tridimensional , Reprodutibilidade dos Testes , Estados Unidos , United States Food and Drug Administration
6.
Elife ; 42015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26083711

RESUMO

Many organisms spanning from bacteria to mammals orient to the earth's magnetic field. For a few animals, central neurons responsive to earth-strength magnetic fields have been identified; however, magnetosensory neurons have yet to be identified in any animal. We show that the nematode Caenorhabditis elegans orients to the earth's magnetic field during vertical burrowing migrations. Well-fed worms migrated up, while starved worms migrated down. Populations isolated from around the world, migrated at angles to the magnetic vector that would optimize vertical translation in their native soil, with northern- and southern-hemisphere worms displaying opposite migratory preferences. Magnetic orientation and vertical migrations required the TAX-4 cyclic nucleotide-gated ion channel in the AFD sensory neuron pair. Calcium imaging showed that these neurons respond to magnetic fields even without synaptic input. C. elegans may have adapted magnetic orientation to simplify their vertical burrowing migration by reducing the orientation task from three dimensions to one.


Assuntos
Caenorhabditis elegans/fisiologia , Locomoção , Magnetismo , Neurônios/fisiologia , Orientação , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Canais Iônicos/metabolismo
7.
PLoS One ; 9(12): e113917, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25470130

RESUMO

Femtosecond laser nanosurgery has been widely accepted as an axonal injury model, enabling nerve regeneration studies in the small model organism, Caenorhabditis elegans. To overcome the time limitations of manual worm handling techniques, automation and new immobilization technologies must be adopted to improve throughput in these studies. While new microfluidic immobilization techniques have been developed that promise to reduce the time required for axotomies, there is a need for automated procedures to minimize the required amount of human intervention and accelerate the axotomy processes crucial for high-throughput. Here, we report a fully automated microfluidic platform for performing laser axotomies of fluorescently tagged neurons in living Caenorhabditis elegans. The presented automation process reduces the time required to perform axotomies within individual worms to ∼17 s/worm, at least one order of magnitude faster than manual approaches. The full automation is achieved with a unique chip design and an operation sequence that is fully computer controlled and synchronized with efficient and accurate image processing algorithms. The microfluidic device includes a T-shaped architecture and three-dimensional microfluidic interconnects to serially transport, position, and immobilize worms. The image processing algorithms can identify and precisely position axons targeted for ablation. There were no statistically significant differences observed in reconnection probabilities between axotomies carried out with the automated system and those performed manually with anesthetics. The overall success rate of automated axotomies was 67.4±3.2% of the cases (236/350) at an average processing rate of 17.0±2.4 s. This fully automated platform establishes a promising methodology for prospective genome-wide screening of nerve regeneration in C. elegans in a truly high-throughput manner.


Assuntos
Axotomia/instrumentação , Axotomia/métodos , Caenorhabditis elegans/fisiologia , Regeneração Nervosa/fisiologia , Animais , Automação , Axônios/fisiologia , Desenho de Equipamento , Processamento de Imagem Assistida por Computador/métodos , Lasers , Técnicas Analíticas Microfluídicas/instrumentação , Neurônios/fisiologia , Reprodutibilidade dos Testes , Fatores de Tempo
8.
PLoS One ; 8(9): e74480, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24069313

RESUMO

Automated biosorter platforms, including recently developed microfluidic devices, enable and accelerate high-throughput and/or high-resolution bioassays on small animal models. However, time-consuming delivery of different organism populations to these systems introduces a major bottleneck to executing large-scale screens. Current population delivery strategies rely on suction from conventional well plates through tubing periodically exposed to air, leading to certain disadvantages: 1) bubble introduction to the sample, interfering with analysis in the downstream system, 2) substantial time drain from added bubble-cleaning steps, and 3) the need for complex mechanical systems to manipulate well plate position. To address these concerns, we developed a multiwell-format microfluidic platform that can deliver multiple distinct animal populations from on-chip wells using multiplexed valve control. This Population Delivery Chip could operate autonomously as part of a relatively simple setup that did not require any of the major mechanical moving parts typical of plate-handling systems to address a given well. We demonstrated automatic serial delivery of 16 distinct C. elegans worm populations to a single outlet without introducing any bubbles to the samples, causing cross-contamination, or damaging the animals. The device achieved delivery of more than 90% of the population preloaded into a given well in 4.7 seconds; an order of magnitude faster than delivery modalities in current use. This platform could potentially handle other similarly sized model organisms, such as zebrafish and drosophila larvae or cellular micro-colonies. The device's architecture and microchannel dimensions allow simple expansion for processing larger numbers of populations.


Assuntos
Caenorhabditis elegans , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reprodutibilidade dos Testes
9.
JALA Charlottesv Va ; 12(6): 363-367, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18172509

RESUMO

Microfluidic cell culture is a promising technology for applications in the drug screening industry. Key benefits include improved biological function, higher quality cell-based data, reduced reagent consumption, and lower cost. In this work, we demonstrate how a microfluidic cell culture design was adapted to be compatible with the standard 96-well plate format. Key design features include the elimination of tubing and connectors, the ability to maintain long term continuous perfusion cell culture using a passive gravity driven pump, and direct analysis on the outlet wells of the microfluidic plate. A single microfluidic culture plate contained 8 independent flow units, each with 10(4) cells at a flow rate of 50 µl/day (6 minute residence time). The cytotoxicity of the anti-cancer drug etoposide was measured on HeLa cells cultured in this format, using a commercial lactate dehydrogenase (LDH) plate reader assay. The integration of microfluidic cell culture methods with commercial automation capabilities offers an exciting opportunity for improved cell-based screening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA