Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(19): 3770-3777, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32164409

RESUMO

We investigate a few density functional theory-based reactivity indices of chemistry, with a view to arrive at an intercomparison and also consider their applications toward the problems of chemical significance. In particular, we propose to use the concepts of fugality and atom-atom polarizability to study the acidic strength of para-substituted benzoic acid derivatives. The nature of the variations and trends in the correlation of reactivity parameters and pKa values is shown to provide an insight into the applicability of these concepts to such reactions.

2.
Phys Chem Chem Phys ; 20(30): 20078-20087, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30024002

RESUMO

Increasing applications of SrTiO3 as a photocatalyst in recent times drive the development of various strategies through doping with foreign elements to improve its efficiency under sunlight. Motivated by the recent experimental observation of increased lifetime of photogenerated charge carriers due to codoping of Ta into Ni-doped SrTiO3 (R. Niishiro et al., Phys. Chem. Chem. Phys., 2005, 7, 2241-2245, and A. Yamakata et al., J. Phys. Chem. C, 2016, 120, 7997-8004), we systematically investigate the detailed electronic structure of Ni-doped SrTiO3 in the presence and absence of Ta. The present theoretical study reveals that Ni-doping reduces the effective band gap by introducing unoccupied Ni-3d states in the forbidden region, while addition of Ta passivates these states. Here, we have properly explained the fact that improved photoconversion efficiency can be achieved only when the proportion of Ta is double with respect to that of Ni. The defect formation energy for the 1 : 2 type (Ni, Ta)-codoped SrTiO3 is energetically more favourable than that of the 1 : 1 type variety. The present study also explored the possibility of using V, Nb, and Sb in place of Ta to aim at better utilization of visible light activity. Interestingly, we arrive at a conclusion that V and Nb may be better choices over experimentally reported Ta for achieving enhanced photocatalytic activity of Ni-doped SrTiO3 under visible light. Finally, applicability of all these codoped systems for the generation of hydrogen and oxygen through water splitting has been checked by inspecting their band edge levels with respect to water redox levels.

3.
Phys Chem Chem Phys ; 18(38): 26466-26474, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27711379

RESUMO

Graphitic carbon nitride based semiconductor materials are found to be potential photocatalysts for generating hydrogen through solar water splitting. Through more accurate hybrid density functional theory calculations, we attempted to tune the electronic band structure of poly s-triazine based graphitic carbon nitride by decorating it with different metal atoms and clusters for improving its visible light absorption efficiency. For deposition on the two-dimensional carbon nitride surface, a range of metals have been considered which include all the 3d transition metals and the noble metals (Ag, Au, Pt and Pd). Our study reveals that though the band gaps of all the metal decorated systems were less than that of pristine carbon nitride, in most of the cases, metal decoration leads to the formation of mid gap impurity states, which can hinder the mobility of charge carriers. However, in the case of Ag and its four atom cluster deposited systems, no mid gap states were observed. In all the metal decorated systems, the measured band edge potentials were also found to satisfy the thermodynamic criterion for overall water splitting. The calculated optical absorption spectra show a shift in the absorption band towards the visible region upon metal decoration. Our results indicate that among all the considered metal atoms silver is the preferred candidate for deposition on the carbon nitride surface for improved photocatalytic activity.

4.
Phys Chem Chem Phys ; 17(23): 15274-83, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25992916

RESUMO

A systematic calculation, using hybrid density functional theory, has been carried out to investigate the origin of the enhancement of photo-conversion efficiency of Rh-doped SrTiO3 with codoping of Sb. In the case of Rh-doped SrTiO3, partially unoccupied states are introduced above the valence band, thus lowering the hole oxidation at the valence band (VB) drastically, which explains the poor oxygen evolution activity of Rh-doped SrTiO3. We show that the partially occupied t2g subset of the Rh 4d orbital is completely filled in the presence of Sb due to the transfer of the extra electron to the Rh center. As a result, acceptor states are completely passivated in the case of (Rh, Sb)-codoped SrTiO3 and a continuous band structure with reduced band gap is formed, which is responsible for the observed enhanced photocatalytic activity of (Rh, Sb)-codoped SrTiO3. We have shown that the relative positions of the band edges of (Rh, Sb)-codoped SrTiO3 with respect to the water redox levels are in favor of the spontaneous release of both hydrogen and oxygen during water splitting, which is consistent with the experimental observation. We have also studied the effect of codoping in different proportions (1 : 2 and 2 : 1) of Rh and Sb. Although 1 : 2 (Rh, Sb)-codoping leads to the formation of a clean band structure with the reduction of the band gap by a larger extent, it shows lower photo-conversion efficiency due to its charge non-compensated nature. In addition, the presence of acceptor states above the VB limits the oxygen evolution efficiency of 2 : 1 (Rh, Sb)-codoped SrTiO3. Thus, the present approach successfully reproduces the experimental features of the Rh-monodoped as well as (Rh, Sb)-codoped SrTiO3 and also explains their origin.

5.
J Phys Chem A ; 119(12): 3056-63, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25706815

RESUMO

Theoretical studies have been carried out at different levels of theory to verify the hydrogen adsorption characteristics of pyridine-lithium ion (1:1) complexes. The nature of interactions associated with the bonding between pyridine and lithium as well as that between lithium and adsorbed molecular hydrogen is studied through the calculation of electron density and electron-density-based reactivity descriptors. The pyridine-lithium ion complex has been hydrogenated systematically around the lithium site, and each lithium site is found to adsorb a maximum of four hydrogen molecules with an interaction energy of ∼-4.0 kcal/mol per molecule of H2. The fate of the hydrogen adsorbed in a pyridine-lithium ion complex (corresponding to the maximum adsorption) is studied in the course of a 2 ps time evolution through ab initio molecular dynamics simulation at different temperatures. The results reveal that the complex can hold a maximum of four hydrogen molecules at a temperature of 77 K, whereas it can hold only two molecules of hydrogen at 298 K.

6.
Phys Chem Chem Phys ; 16(44): 24527-35, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25310754

RESUMO

In this study, the effect of cation (Mo or W) and anion (N) codoping on the band structure of SrTiO3 is investigated to improve its photocatalytic activity for water splitting under sunlight. We consider both the non-compensated and compensated codoping strategies using different ratios of the cationic and anionic dopants. The present study employs hybrid density functional theory to describe the electronic structure of all the systems accurately. Although non-compensated (1 : 1) codoping reduces the band gap significantly, the presence of localized impurity states may hinder charge carrier mobility. This also changes the positions of the band edges to such an extent that the (Mo/W, N)-codoped SrTiO3 system becomes ineffective for overall water splitting. Besides, the formation of charge compensating defects may contribute to the carrier loss. On the other hand, compensated (1 : 2) codoping not only reduces the band gap to shift the absorption curve towards the visible region, but also passivates the impurity states completely, ensuring improved photoconversion efficiency. The reduction of the band gap is found to be more prominent in the case of (W, 2N)-codoped SrTiO3 than (Mo, 2N)-codoped SrTiO3. In both the cases, the band edge positions are found to satisfy the thermodynamic criteria for overall water splitting. Our calculation predicts that the codoping of (Mo/W) and N in the 1 : 2 ratio also enhances the reducing properties at the conduction band in comparison to that in the undoped SrTiO3, which is beneficial for hydrogen release in water splitting. The present study thus demonstrates the effect of the nature of the dopant elements as well as their proportion to achieve the best outcome of the designed material for practical applications.

7.
Phys Chem Chem Phys ; 16(32): 17116-24, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25007948

RESUMO

In this theoretical study, we employ a codoping strategy to reduce the band gap of NaTaO3 aimed at improving the photocatalytic activity under visible light. The systematic study includes the effects of metal (W) and nonmetal (N) codoping on the electronic structure of NaTaO3 in comparison to the effect of individual dopants. The feasibility of the introduction of N into the NaTaO3 crystal structure is found to be enhanced in the presence of W, as indicated by the calculated formation energy. This codoping leads to formation of a charge compensated system, beneficial for the minimization of vacancy related defect formation. The electronic structure calculations have been carried out using a hybrid density functional for an accurate description of the proposed system. The introduction of W in place of Ta leads to the appearance of donor states below the conduction band, while N doping in place of oxygen introduces isolated acceptor states above the valence band. The codoping of N and W also passivates undesirable discrete midgap states. This feature is not observed in the case of (Cr, N) codoped NaTaO3 in spite of its charge compensated nature. We have also studied charge non-compensated codoping using several dopant pairs, including anion-anion and cation-anion pairs. However, this non-compensated codoping introduces localized states in between the valence band and the conduction band, and hence may not be effective in enhancing the photocatalytic properties of NaTaO3. The optical spectrum shows that the absorption curve for the (W, N)-codoped NaTaO3 is extended to the visible region due to narrowing of the band gap to 2.67 eV. Moreover, its activity for the photo decomposition of water to produce both H2 and O2 remains intact. Hence, based on the present investigation we can propose (W, N) codoped NaTaO3 as a promising photocatalyst for visible light driven water splitting.

8.
Rapid Commun Mass Spectrom ; 27(9): 947-54, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23592196

RESUMO

RATIONALE: Determining the speciation of platinum-benzoylthiourea (Pt-BTU) in the gas phase is a challenging task due to various reaction pathways and the conformational flexibility of the BTU ligand. METHODS: Electrospray ionization mass spectrometry (ESI-MS) experiments and density functional theory (DFT) based calculations were carried out to shed light on this complex reaction in the gas phase using K2 PtCl4 salt and BTU. Various Pt complexes were studied in both positive and negative ion modes of ESI-MS using a quadrupole-time-of-flight mass spectrometer. The effects of the ESI-MS experimental parameters such as capillary voltage, pH and electrolyte on the peak intensity of the Pt-BTU complex were investigated. DFT calculations employing B3LYP functional with the 6-311++G** basis set were used to characterize the geometric parameters and fragmentation patterns of various Pt complexes in the gas phase. RESULTS: In the positive ion mode, complexes with differing numbers of BTU ligands coordinated to the metal ion were observed, whereas, in the negative ion mode, no species associated with BTU or with the solvent (acetonitrile) molecules were found. It was also found that Pt forms complexes with the BTU ligand in different stoichiometric ratios. For both Pt(BTU)2 and Pt(BTU)3 complexes, the BTU ligand undergoes deprotonation followed by bi-dentate coordination. DFT calculations suggest that BTU can coordinate to Pt in both cis and trans isomeric forms, which are nearly iso-energetic with a slight preference towards the trans-isomer. The preference of trans-BTU binding is attributed to the exclusive retention of intra-molecular hydrogen bonding which is absent in the cis-form. CONCLUSIONS: Experimental and theoretical calculations have shown that the gas-phase interaction of BTU to Pt is very complex. The BTU ligand can coordinate to Pt in both mono-dentate and bi-dentate modes, the latter mode being favorable upon deprotonation of the BTU ligand. Furthermore, many close lying species with different geometric isomeric forms are found to be possible due to the presence of intra- and inter-molecular hydrogen bonding.


Assuntos
Compostos de Platina/química , Espectrometria de Massas por Ionização por Electrospray , Tioureia/análogos & derivados , Gases/química , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Tioureia/química
9.
J Chem Phys ; 139(5): 054702, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23927276

RESUMO

Vapor to liquid condensation in presence of spherical seed particle of any arbitrary radius ranging from zero to infinity has been investigated using density functional theory, by modeling the local Helmholtz free energy density functional as well as the density profile at the vapor-liquid interface. A general theory is, thus, obtained which provides the different modes of nucleation based on the size of the seed ranging from zero (corresponding to the homogeneous mode of nucleation) to infinity (corresponding to the heterogeneous nucleation on flat surface). The theory is applied to the Lennard-Jones fluid and the optimized shape (i.e., contact angle) and formation free energy of droplets of any arbitrary size have been obtained in this work. The change of the shape (optimized) with the variation of the size of the liquid droplet as well as with the size of the solid substrate has been studied, thus predicting the shape-size relationship in the course of vapor to liquid heterogeneous nucleation on a spherical solid substrate of any particular size. The spinodal decomposition of vapor has also been observed at higher strength of the solid-fluid interaction. The results have been compared with the results of the conventional classical nucleation theory.

10.
J Phys Chem A ; 116(17): 4388-95, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22471316

RESUMO

The feasibility of using cucurbituril host molecule as a probable actinyl cation binders candidate is investigated through density functional theory based calculations. Various possible binding sites of the cucurbit[5]uril host molecule to uranyl are analyzed and based on the binding energy evaluations, µ(5)-binding is predicted to be favored. For this coordination, the structure, vibrational spectra, and binding energies are evaluated for the binding of three actinyls in hexa-valent and penta-valent oxidation states with functionalized cucurbiturils. Functionalizing cucurbituril with methyl and cyclohexyl groups increases the binding affinities of actinyls, whereas fluorination decreases the binding affinities as compared to the native host molecule. Surprisingly hydroxylation of the host molecule does not distinguish the oxidation state of the three actinyls.


Assuntos
Actínio/química , Compostos Macrocíclicos/química , Teoria Quântica , Compostos de Urânio/química , Cátions/química
11.
J Phys Chem A ; 116(25): 6831-6, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22650445

RESUMO

The properties of methanol clusters [(CH(3)OH)(n), n = 1-12] have been studied by using ab initio electronic structure calculations with reference to the aggregation number dependence of several reactivity descriptors, such as ionization potential, electron affinity, polarizability, hardness, and binding energy. A good correlation between the dipole polarizability and the ionization potential of these hydrogen-bonded molecular clusters is shown to exist. The softness parameter has also been shown to correlate strongly with the dipole polarizability of these molecular clusters. Similar good correlations are also demonstrated to exist for water clusters [(H(2)O)(n), n = 1-20]. This work can thus be useful for calculating the polarizability of larger methanol or water clusters in terms of the corresponding ionization potential.

12.
BMC Immunol ; 12: 61, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22024358

RESUMO

BACKGROUND: Vaccines have profoundly impacted global health although concerns persist about their potential role in autoimmune or other adverse reactions. To address these concerns, vaccine components like immunogens and adjuvants require critical evaluation not only in healthy subjects but also in those genetically averse to vaccine constituents. Evaluation in autoimmune-prone animal models of adjuvants is therefore important in vaccine development. The objective here was to assess the effectiveness of experimental adjuvants: two phytol-derived immunostimulants PHIS-01 (phytanol) and PHIS-03 (phytanyl mannose), and a new commercial adjuvant from porcine small intestinal submucosa (SIS-H), relative to a standard adjuvant alum. Phytol derivatives are hydrophobic, oil-in water diterpenoids, while alum is hydrophilic, and SIS is essentially a biodegradable and collagenous protein cocktail derived from extracellular matrices. RESULTS: We studied phthalate -specific and cross-reactive anti-DNA antibody responses, and parameters associated with the onset of autoimmune disorders. We determined antibody isotype and cytokine/chemokine milieu induced by the above experimental adjuvants relative to alum. Our results indicated that the phytol-derived adjuvant PHIS-01 exceeded alum in enhancing anti-phthalate antibody without much cross reactivity with ds-DNA. Relatively, SIS and PHIS-03 proved less robust, but they were also less inflammatory. Interestingly, these adjuvants facilitated isotype switching of anti-hapten, but not of anti-DNA response. The current study reaffirms our earlier reports on adjuvanticity of phytol compounds and SIS-H in non autoimmune-prone BALB/c and C57BL/6 mice. These adjuvants are as effective as alum also in autoimmune-prone NZB/WF1 mice, and they have little deleterious effects. CONCLUSION: Although all adjuvants tested impacted cytokine/chemokine milieu in favor of Th1/Th2 balance, the phytol compounds fared better in reducing the onset of autoimmune syndromes. However, SIS is least inflammatory among the adjuvants evaluated.


Assuntos
Adjuvantes Farmacêuticos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Autoanticorpos/metabolismo , Doenças Autoimunes/imunologia , Fitol/administração & dosagem , Adjuvantes Farmacêuticos/efeitos adversos , Compostos de Alúmen/efeitos adversos , Animais , Autoanticorpos/genética , Autoanticorpos/imunologia , Doenças Autoimunes/etiologia , Doenças Autoimunes/prevenção & controle , Reações Cruzadas , Citocinas/imunologia , Citocinas/metabolismo , DNA/imunologia , Predisposição Genética para Doença , Humanos , Imunidade Humoral/efeitos dos fármacos , Switching de Imunoglobulina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NZB , Ácidos Ftálicos/imunologia , Fitol/efeitos adversos , Fitol/análogos & derivados , Suínos , Vacinação/efeitos adversos
13.
Cell Immunol ; 271(2): 227-38, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21813116

RESUMO

In a previous report, we observed that the phytol-derived immunostimulant, PHIS-01 (phytanol), is a nontoxic oil-in-water adjuvant which is superior to most commercial adjuvants. In contrast, the parent diterpene alcohol phytol, though highly effective as an adjuvant, is relatively toxic. To assess the importance of the polar functional group in PHIS-01, we prepared two new compounds PHIS-02 (phytanyl amine) and PHIS-03 (phytanyl mannose). All three phytol derivatives proved to be excellent adjuvants, but differed in solubility and mode of action. To delineate their molecular signatures in the local microenvironment, we performed inflammasome and cytokine microarray analyses with the peritoneal fluid of mice treated with alum or the phytol compounds above, in the presence or absence of soluble protein antigens. We report here that the phytol derivatives had a significant time-dependent impact on the host chemokine-cytokine microenvironment and subsequently on specific humoral responses. Moreover, the inclusion of protein immunogens induced further changes in host microenvironments, including rapid (<2h) expression of cytokines and chemotactic factors (IL-6, MCP-1, KC, MIP-1, and LIX), implying mobilization and activation of neutrophils, and monocytes. PHIS-01 proved to be the most effective in this regard. Inflammatory cytokine cascades were dominant even after 24h possibly to facilitate involvement of the acquired immune system with the release of B-lymphocyte chemo-attractant BLC, T-cell activation-3 chemokines TCA, IL-4, IL-12, and TIMP-1. We also noted enhanced expression of NLRP genes including NLRP3 with both alum and phytol derivatives (particularly PHIS-01).


Assuntos
Adjuvantes Imunológicos/farmacologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Fitol/análogos & derivados , Animais , Líquido Ascítico/citologia , Líquido Ascítico/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Microambiente Celular/efeitos dos fármacos , Microambiente Celular/imunologia , Quimiocinas/genética , Citocinas/genética , Feminino , Imunidade Inata/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Inflamassomos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fitol/farmacologia , Análise Serial de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional/efeitos dos fármacos
14.
Cell Immunol ; 271(2): 308-18, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21855057

RESUMO

Terpenoids are ubiquitous natural compounds that have been shown to improve vaccine efficacy as adjuvants. To gain an understanding of the structural features important for adjuvanticity, we studied compounds derived from a diterpene phytol and assessed their efficacy. In a previous report, we showed that phytol and one of its derivatives, PHIS-01 (a phytol-derived immunostimulant, phytanol), are excellent adjuvants. To determine the effects of varying the polar terminus of PHIS-01, we designed amine and mannose-terminated phytol derivatives (PHIS-02 and PHIS-03, respectively). We studied their relative efficacy as emulsions with soluble proteins, ovalbumin, and a hapten-protein conjugate phthalate-KLH. Immunological parameters evaluated consisted of specific antibody responses in terms of titers, specificities and isotype profiles, T cell involvement and cytokine production. Our results indicate that these new isoprenoids were safe adjuvants with the ability to significantly augment immunogen-specific IgG1 and IgG2a antibody responses. Moreover, there was no adverse phthalate cross-reactive anti-DNA response. Interestingly, PHIS-01 and PHIS-03 influenced differentially T-helper polarization. We also observed that these compounds modulated the immune response through apoptotic/necrotic effects on target tumor cells using murine lymphomas. Finally, unlike squalene and several other terpenoids reported to date, these phytol derivatives did not appear arthritogenic in murine models.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Fitol/análogos & derivados , Vacinas/administração & dosagem , Adjuvantes Imunológicos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Citocinas/biossíntese , Diterpenos/administração & dosagem , Diterpenos/imunologia , Emulsões , Feminino , Haptenos/administração & dosagem , Hemocianinas/administração & dosagem , Imunidade Humoral/efeitos dos fármacos , Switching de Imunoglobulina/efeitos dos fármacos , Imunoglobulina G/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Necrose/imunologia , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Ácidos Ftálicos/administração & dosagem , Fitol/administração & dosagem , Fitol/imunologia , Fitol/toxicidade , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia
15.
Phys Chem Chem Phys ; 13(40): 18038-46, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21931905

RESUMO

The speciation of uranyl ions in fulvic acid (FA) and humic acid (HA), based on models of larger sizes, is systematically studied using density functional theory (DFT). Four uranyl binding sites are suggested for FA and based on their energetics, the preferential binding sites are proposed. The computed binding sites include two chelating types, one through the carboxylate group and one via the hydroxo group. A systematic way to attain the possible structure for Stevenson's HA model is carried out using a combined molecular dynamics (MD) and quantum chemical approach. Calculated structures and energetics reveal many interesting features such as conformational flexibility of HA and binding of hydrophobic molecules in agreement with the experimental suggestions. Five potential binding sites are proposed for uranyl binding to HA and the calculated geometries correlate nicely with the experimental observations. Our binding energy calculations reveal that apart from uranyl binding at the carboxylate functional group, binding at other functional groups such as those involving quinone and hydroxo sites are also possible. Finally, based on our cluster calculations the strength of uranyl binding to HAs and FAs is largely influenced by neighbouring groups via hydrogen bonding interactions.

16.
J Phys Chem A ; 115(24): 6732-7, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21598919

RESUMO

Understanding the behavior of radioactive nuclide elements in different environmental conditions is an active area of research. In this work, we have investigated the possible interaction mechanism between carbon nanotubes and uranyl using density functional theory. It is shown that functionalized carbon nanotubes can be used to bind uranyl ions much more efficiently as compared to their unfunctionalized counterpart. The uranyl binding energies are sensitive to the nature of the functional groups rather than the carbon nanotube itself. The binding takes place preferably at the functionalized sites, although pH could determine the strength of uranyl binding. Our predicted results correlate well with the recent experimental uranyl sorption studies on carbon nanotubes. These finding are new and can open up a new era for actinide speciation and separation chemistry using carbon nanotubes.

17.
J Chem Phys ; 135(12): 124710, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21974555

RESUMO

A double well type Helmholtz free energy density functional and a model density profile for a two phase vapor-liquid system are used to obtain the size-dependent interfacial properties of the vapor-liquid interface at coexistence condition along the lines of van der Waals and Cahn and Hilliard density functional formalism of the interface. The surface tension, temperature-density curve, density profile, and thickness of the interface of Lennard-Jones fluid droplet-vapor equilibrium, as predicted in this work are reported. The planar interfacial properties, obtained from consideration of large radius of the liquid drop, are in good agreement with the results of other earlier theories and experiments. The same free energy model has been tested by solving the equations numerically, and the results compare well with those from the use of model density profile.

18.
J Chem Phys ; 134(2): 024502, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21241115

RESUMO

Density functional theory (DFT) with square gradient approximation for the free energy functional and a model density profile are used to obtain an analytical expression for the size-dependent free energy of formation of a liquid drop from the vapor through the process of homogeneous nucleation, without invoking the approximations used in classical nucleation theory (CNT). The density of the liquid drop in this work is not the same as the bulk liquid density but it corresponds to minimum free energy of formation of the liquid drop. The theory is applied to study the nucleation phenomena from supersaturated vapor of Lennard-Jones fluid. The barrier height predicted by this theory is significantly lower than the same in CNT which is rather high. The density at the center of the small liquid drop as obtained through optimization is less than the bulk density which is in agreement with other earlier works. Also proposed is a sharp interface limit of the proposed DFT of nucleation, which is as simple as CNT but with a modified barrier height and this modified classical nucleation theory, as we call it, is shown to lead to improved results.


Assuntos
Transição de Fase , Teoria Quântica , Tensão Superficial , Termodinâmica
19.
Phys Chem Chem Phys ; 12(12): 2929-34, 2010 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-20449383

RESUMO

An ab initio investigation of the polarizabilities of the first two excited states of methanol clusters [(CH(3)OH)(n), n = 1-12] has been carried out employing time dependent density functional theory with B3LYP exchange correlation functional using 6-311++G(d,p) and Sadlej basis sets. Good linear correlations have been demonstrated for the first and second excited state polarizabilities as a function of the aggregation number (n) of the methanol clusters. On the contrary, for water clusters the variations of excited state polarizabilities with cluster size are found to be non-monotonic. The variations of the excitation energies and oscillator strengths with n for the first three excited states of methanol clusters and water clusters are also reported.

20.
J Phys Chem A ; 114(46): 12244-50, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21033764

RESUMO

Although the boron hydrides are well-known in the literature, the aluminum hydride chemistry is limited to very few systems such as AlH(3), its dimer, and its polymeric form. In view of the recent experimental studies on the possible existence of the aluminum hydrides, herein, we have undertaken a systematic study on the electronic structure and properties of these aluminum hydrides. Under this, we have studied different classes of hydrides, viz., closo (Al(n)H(n+2)), nido (Al(n)H(n+4)), and arachno (Al(n)H(n+6)), similar to the boranes. All the aluminum hydrides are found to have exceptionally large highest-occupied molecular orbital-lowest-unoccupied molecular orbital gaps, low electron affinities, large ionization potentials and also large enthalpy and free energy of atomization. In addition, most of the structures are also found to have high symmetries. These exceptional properties can be indicative of the pronounced stability, and hence, it is expected that other aluminum hydride complexes can indeed be observed experimentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA