RESUMO
Morpholine-2,5-diones (MDs) are increasingly attractive compounds that can be produced using amino acid (AA) as a starting material. These compounds can undergo polymerization to produce biodegradable materials, namely, polydepsipeptides, that hold the potential to be used in medicinal applications. In this study, a simplified yet high-yield MD synthesis procedure was developed and applied to produce a range of MDs derived from hydrophobic AAs including Leu, Ile, Val, Phe, Asp(OBzl), Lys(Z), and Ser(tBu). Moreover, using a blend of hydrophobic amino acids (Leu, Ile, Val, and Phe), mixtures of MDs could be synthesized simultaneously. Finally, the polymerization of these MD mixtures was probed and proven successful. The concept investigated herein constitutes a novel path toward the valorization of protein-rich waste by producing renewable and biodegradable materials.
RESUMO
There is a growing interest surrounding morpholine-2,5-dione-based materials due to their impressive biocompatibility as well as their capacity to break down by hydrolytic and enzymatic pathways. In this study, the ring-opening (co)polymerization of leucine-derived 3S-(isobutyl)morpholine-2,5-dione (MD) and lactide (LA) was performed via ball-milling using a catalytic system composed of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 3-[3,5-bis(trifluoromethyl)phenyl]-1-cyclohexylthiourea (TU). Once the homopolymerizations of MD and LA optimized and numerous parameters were studied, the mechanochemical ring-opening copolymerization of these monomers was explored. The feasibility of ring-opening copolymerizations in mechanochemical systems was demonstrated and a range of P(MD-co-LA) copolymers were produced with varying proportions of MD (23%, 48%, and 69%). Furthermore, the beneficial cocatalytic effects of TU with regards to ROP control were found to be operative within mechanochemical systems. Further parallels were observed between solution- and mechanochemical-based ROPs.
Assuntos
Dioxanos , Tioureia , Morfolinas , Polimerização , PolímerosRESUMO
Mechanical properties of gluten-based biomaterials, such as break stress, were known to be influenced by temperature and shear stresses applied during processing. It is well documented in literature that these processing parameters promoted wheat gluten protein aggregation. Exchange between disulfide bonds and thiol groups oxidation are the postulated mechanisms that lead to gluten protein solubility loss in sodium dodecyl sulfate buffers. Both nucleophilic and radical reactions were postulated to act during gluten aggregation. To graft molecules on gluten, a study was carried out to explore the reactivity of its thiol and disulfide groups during thermomechanical mixing. A range of reactants able to react via radical or nucleophilic pathways with thiol groups were synthesized. Reactivity between gluten and functions was quantified by gluten solubility measurements. This investigation and literature observations allowed proposal of a general gluten aggregation mechanism during mixing.
Assuntos
Química Agrícola/métodos , Glutens/química , Proteínas de Plantas/química , Enxofre/química , Triticum/química , Fenômenos Biomecânicos/métodosRESUMO
The aim of this work was to study changes in homopolypeptide chain conformation as a function of the number of residues by the modeling of the electrophoretic mobility. For this purpose, the frictional coefficients of poly(N(epsilon)-trifluoroacetyl-L-lysine) with different number of residues (up to 11) were determined from the absolute ionic mobilities and modeled by the hydrodynamic frictional coefficient of an equivalent cylinder. This approach allowed determination of geometrical parameters of the polypeptide chain in a liquid phase (nonaqueous solution of the BGE). The fact that the BGE and analyte are dissolved in mixed (methanol-ACN) organic solvent implied to take into account different effects and corrections that are generally not considered in aqueous solvent: namely, the effect of ion-pairs between constituents of the BGE for the calculation of the ionic strength, the effect of ion-pairs between the solutes and the electrolyte counterions and the correction due to the dielectric friction (Hubbard-Onsager equations). In addition, the influence of the ionic strength on the electrophoretic mobility was corrected using the Pitts equation, and the effect of lateral charges due to a slight deprotonation of the -NH- group in the lateral chain was also considered. From this modeling, molecular geometrical parameters relative to the linear and helicoïdal conformations were obtained with very good correlation coefficients. Interestingly, this work also points out that the use of ionic mobility modeling for extracting molecular geometrical parameters can also be applied to end-charged polypeptides with slightly charged lateral chains (3% of elementary charge per residue).
Assuntos
Eletroforese Capilar/métodos , Compostos Orgânicos/química , Peptídeos/química , Polilisina/química , Solventes/química , Acetonitrilas/química , Algoritmos , Fricção , Interações Hidrofóbicas e Hidrofílicas , Metanol/química , Modelos Químicos , Modelos Moleculares , Concentração Osmolar , Peptídeos/síntese química , Polilisina/síntese química , Conformação Proteica , Ácido Trifluoracético/síntese química , Ácido Trifluoracético/químicaRESUMO
Recently, we demonstrated the possibility to extend the range of capillary electrophoresis (CE) applications to the separation of non-water-soluble synthetic polymers. This work focuses on the control of the electro-osmotic flow (EOF) and on the limitation of the solute adsorption in nonaqueous electrolytes. For these purposes, different strategies were investigated. For the initial, a viscous additive (ethylene glycol or glycerol) was used in the electrolyte in order to decrease the EOF magnitude and, possibly, to compete with solute adsorption. A second strategy was to modify, before separation, the fused-silica capillary wall by the adsorption of poly(ethylene oxide) (PEO) via hydrogen bonding. The influence of the molecular mass of the adsorbed PEO on the EOF magnitude and direction was studied in electrolytes based on methanol/acetonitrile mixtures containing ammonium ions. For PEO molecular masses above 1000 g/mol, reversed (anodic) EOF were reported in accordance with previous results obtained with PEO covalently bonded capillaries. The influence of the nature and the concentration of the background electrolyte cation on the EOF magnitude and direction were also investigated. A third strategy consisted in modifying the capillary wall by the adsorption of a cationic polyelectrolyte layer. Advantageously, this polyelectrolyte layer suppressed the adsorption of the polymer solutes onto the capillary wall. The results obtained in this work confirm the high potential and the versatility of CE for the characterization of ionizable organic polymers in nonaqueous media.
Assuntos
Materiais Revestidos Biocompatíveis/química , Eletroforese Capilar/métodos , Peptídeos/isolamento & purificação , Adsorção , Eletroforese Capilar/instrumentação , Ligação de Hidrogênio , Poliaminas , Polieletrólitos , Polietilenoglicóis , Solubilidade , Propriedades de SuperfícieRESUMO
In this work, the separation and characterization of ionizable organic polymers nonsoluble in water is carried out using nonaqueous capillary electrophoresis-ion trap mass spectrometry (NACE-MS). The polymers studied are poly(N(epsilon)-trifluoroacetyl-l-lysine) (poly(TFA-Lys)) obtained by ring-opening polymerization of the corresponding N-carboxyanhydride. Different parameters (i.e., liquid sheath nature and flow rate, electrospray temperature, and separation buffer composition) are optimized in order to obtain both an adequate CE separation and a high MS signal of the samples under study. The optimum NACE-MS separation conditions allow the molecular mass characterization of poly(TFA-Lys) up to a degree of polymerization of 38. NACE-MS provides interesting information on the chemical structure of (i). the polymer end groups and (ii). other final byproducts. The MS spectra obtained by using this CE-MS protocol confirm that the polymerization was initiated by the reaction of n-hexylamine (initiator) on the monomer. CE-MS-MS and CE-MS-MS-MS results demonstrate that two different termination reactions occurred during the polymerization process leading to the transformation of the reactive amine end group into a carboxylic or a formyl groups. Byproducts such as 3-hydantoinacetic acid or diketopiperazine were also detected. To our knowledge, this is the first work in which the great possibilities of NACE-MS and NACE-MS(n) for characterizing synthetic polymers are demonstrated.
RESUMO
Poly(Nepsilon-trifluoroacetyl-L-lysine) was used as a model solute to investigate the potential of nonaqueous capillary electrophoresis (NACE) for the characterization of synthetic organic polymers. The information obtained by NACE was compared to that derived from size exclusion chromatography (SEC) experiments, and the two techniques were found to be complimentary for polymer characterization. On one hand, NACE permitted (i) the separation of oligomers according to their molar mass and (ii) the separation of the polymers according to the nature of the end groups. On the other hand, SEC experiments were used for the characterization of the molar mass distribution for higher molar masses. Due to the tendency of the solutes (polypeptides) to adsorb onto the fused-silica capillary wall, careful attention was paid to the rinsing procedure of the capillary between runs in order to keep the capillary surface clean. For that purpose, the use of electrophoretic desorption under denaturating conditions was very effective. Optimization of the separation was performed by studying (i) the influence of the proportion of methanol in a methanoVacetonitrile mixture and (ii) the influence of acetic acid concentration in the background electrolyte. Highly resolved separation of the oligomers (up to a degree of polymerization n of approximately 50) was obtained by adding trifluoroacetic acid to the electrolyte. Important information concerning the polymer conformations could be obtained from the mobility data. Two different plots relating the effective mobility data to the degree of polymerization were proposed for monitoring the changes in polymer conformations as a function of the number of monomers.