Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 206: 107291, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969274

RESUMO

Fibroblast growth factors (FGFs) act as proangiogenic and mitogenic cytokines in several cancers, including multiple myeloma (MM). Indeed, corrupted FGF autocrine and paracrine secretion induces an aberrant activation of the FGF receptor (FGFR) signaling sustaining cancer cell spreading and resistance to pharmacological treatments. Thus, FGF traps may represent a promising anti-cancer strategy to hamper the ligand-dependent activation of the FGF/FGFR system. We previously identified NSC12 as the first orally available small molecule FGF trap able to inhibit the growth and progression of several FGF-dependent tumor models. NSC12 is a pregnenolone derivative carrying a 1,1-bis-trifluoromethyl-1,3-propanediol chain in position 17 of the steroid nucleus. Investigation of structure-activity relationships (SARs) provided more potent and specific NSC12 steroid derivatives and highlighted that the C17-side chain is pivotal for the FGF trap activity. Here, a scaffold hopping approach allowed to obtain two FGF trap compounds (22 and 57) devoid of the steroid nucleus and able to efficiently bind FGF2 and to inhibit FGFR activation in MM cells. Accordingly, these compounds exert a potent anti-tumor activity on MM cell lines both in vitro and in vivo and on MM patient-derived primary cells, strongly affecting the survival of both proteasome-inhibitor sensitive and resistant MM cells. These results propose a new therapeutic option for relapsed/refractory MM patients and set the bases for the development of novel FGF traps prone to chemical diversification to be used in the clinic for the treatment of those tumors in which the FGF/FGFR system plays a pivotal role, including MM.

2.
Analyst ; 149(3): 700-706, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38054815

RESUMO

Multimodal imaging and spectroscopy like concurrent scanning transmission X-ray microscopy (STXM) and X-ray fluorescence (XRF) are highly desirable as they allow retrieving complementary information. This paper reports on the design, development, integration and field testing of a novel in situ atomic force microscopy (AFM) instrument for operation under high vacuum in a synchrotron soft X-ray microscopy STXM-XRF end-station. A combination of µXRF and AFM is demonstrated for the first time in the soft X-ray regime, with an outlook for the full XRF-STXM-AFM combination.

3.
Environ Res ; 252(Pt 1): 118878, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582417

RESUMO

Fibrous erionite is the only zeolite classified as Group 1 carcinogen by the International Agency for Research on Cancer (IARC). Carcinogenesis induced by erionite is thought to involve several factors as biopersistence, the iron role and cation exchange processes. To better understand these mechanisms, a detailed investigation at the micro scale was performed, collecting elemental information on iron and cation release and their distribution in biological systems by synchrotron micro-X-ray fluorescence mapping (SR-micro-XRF) and synchrotron micro-X-ray absorption spectroscopy (SR-micro-XANES) at the TwinMic beamline (Elettra synchrotron) and at the ID21 beamline of the European Synchrotron Radiation Facility (ESRF). By microscopy and chemical mapping, highly detailed maps of the chemical and morphological interaction of biological systems with fibres could be produced. In detail, THP-1 cell line derived macrophages, used as in vitro model, were analysed during erionite-Na phagocytosis at different time intervals, after single dose exposure. For comparison, cellular fluorescent probes were also used to evaluate the intracellular free sodium and calcium concentrations. Synchrotron analyses visualised the spatial distribution of both fibre and mineral particle associated metals during the phagocytosis, describing the mechanism of internalisation of erionite-Na and its accessory mineral phases. The intracellular distribution of metals and other cations was mapped to evaluate metal release, speciation changes and/or cation exchange during phagocytosis. The fluorescent probes complemented microchemical data clarifying, and confirming, the cation distribution observed in the SR-micro-XRF maps. The significant cytoplasmic calcium decrease, and the concomitant sodium increase, after the fibre phagocytosis seemed due to activation of plasma membrane cations exchangers triggered by the internalisation while, surprisingly, the ion-exchange capacity of erionite-Na could play a minor role in the disruption of the two cations intracellular homeostasis. These results help to elucidate the role of cations in the toxicity of erionite-treated THP-1 macrophages and add knowledge to its carcinogenicity process.


Assuntos
Macrófagos , Síncrotrons , Zeolitas , Humanos , Zeolitas/toxicidade , Zeolitas/química , Macrófagos/efeitos dos fármacos , Células THP-1 , Cátions , Espectrometria por Raios X , Fagocitose/efeitos dos fármacos , Cálcio/metabolismo , Sódio
4.
Chem Biodivers ; 21(2): e202301815, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38152840

RESUMO

Pistacia chinensis subsp. integerrima (J.L. Stewart) Rech. f. is a plant known for its therapeutic applications in traditional medicine, which are related to its antimicrobial, anticancer, antioxidant, anti-inflammatory, analgesic, antidiarrheal, and muscle relaxant properties. The galls of P. chinensis are rich in triterpenes and flavonoids, and we here report the extraction of pistagremic acid (1), apigenin (2) and sakuranetin (3) from this source. The isolated compounds were tested against Aspergillus flavus, Candida albicans, Candida glabrata, Fusarium solani, Microsporum canis and Trichoderma longibrachiatum. The results highlighted the antimicrobial activity of flavonoids 2 and 3, suggesting that this class of molecules may be responsible for the effect related to the traditional use. On the other hand, when the compounds and the extract were tested for their antiproliferative activity on a panel of 4 human cancer cell lines, the triterpene pistagremic acid (1) showed a higher potential, thus demonstrating a different bioactivity profile. Structure-based docking and molecular dynamics simulations were used to help the interpretation of experimental results. Taken together, the here reported findings pave the way for the rationalization of the use of P. chinensis extracts, highlighting the contributions of the different components of galls to the observed bioactivity.


Assuntos
Pistacia , Triterpenos , Humanos , Antifúngicos/farmacologia , Triterpenos/farmacologia , Flavonoides/farmacologia , Extratos Vegetais
5.
Eur J Neurosci ; 57(12): 1954-1965, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36382587

RESUMO

The growing interest on the therapeutic potential against neurodegeneration of Cannabis sativa extracts, and of phytocannabinoids in particular, is paralleled by a limited understanding of the undergoing biochemical pathways in which these natural compounds may be involved. Computational tools are nowadays commonly enrolled in the drug discovery workflow and can guide the investigation of macromolecular targets for such molecules. In this contribution, in silico techniques have been applied to the study of C. sativa constituents at various extents, and a total of seven phytocannabinoids and four terpenes were considered. On the side of ligand-based virtual screening, physico-chemical descriptors were computed and evaluated, highlighting the phytocannabinoids possessing suitable drug-like properties to potentially target the central nervous system. Our previous findings and literature data prompted us to investigate the interaction of these molecules with phosphodiesterases (PDEs), a family of enzymes being studied for the development of therapeutic agents against neurodegeneration. Among the compounds, structure-based techniques such as docking and molecular dynamics (MD), highlighted cannabidiol (CBD) as a potential and selective PDE9 ligand, since a promising calculated binding energy value (-9.1 kcal/mol) and a stable interaction in the MD simulation timeframe were predicted. Additionally, PDE9 inhibition assay confirmed the computational results, and showed that CBD inhibits the enzyme in the nanomolar range in vitro, paving the way for further development of this phytocannabinoid as a therapeutic option against neurodegeneration.


Assuntos
Canabidiol , Canabidiol/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Ligantes , Terpenos , Diester Fosfórico Hidrolases
6.
Bioorg Chem ; 141: 106882, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839144

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded enveloped positive RNA virus and the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Chloroquine (CQ), an antimalarial drug, was reported to be active against several viruses including coronaviruses. The mechanism of host cell invasion by SARS-CoV-2 involves the interaction of angiotensin-converting enzyme (ACE2) with receptor-binding domain (RBD) of spike protein (S). The main protease (Mpro/3CLpro) is an attractive drug target due to its vital function in regulation of polyprotein translated from viral RNA. In this study, a series of novel quinoline-triazole hybrid compounds was synthesized and subjected to evaluations on their cytotoxicity, interactions with different variants of RBD in SARS-CoV-2 and with 3CLpro enzyme by experimental and computational techniques to identify their ability of counteracting viral infection. The results of bio-layer interferometry showed that quinoline derivative 11 has good interaction with delta plus and omicron RBD variants (KD = 3.46 × 10-5 and 6.38 × 10-5 M) while derivative 1 is the best binder for recent variant omicron (KD = 26.9 µM) among the series. Potent compounds 1-4 and 11 also demonstrated a suppressive effect on 3CLpro activity in a non-dose-dependent manner. Further docking study revealed that these compounds interacted within the same area of RBD, while no correlation was found for 3CLpro. Furthermore, the molecular dynamics simulations were carried out to assess the conformational stability of docked complexes for preliminary verification.


Assuntos
Antimaláricos , COVID-19 , Quinolinas , Humanos , SARS-CoV-2 , Cloroquina , Quinolinas/farmacologia , Ligação Proteica , Simulação de Acoplamento Molecular
7.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834632

RESUMO

Scanning transmission X-ray microscopy (STXM) provides the imaging of biological specimens allowing the parallel collection of localized spectroscopic information by X-ray fluorescence (XRF) and/or X-ray Absorption Near Edge Spectroscopy (XANES). The complex metabolic mechanisms which can take place in biological systems can be explored by these techniques by tracing even small quantities of the chemical elements involved in the metabolic pathways. Here, we present a review of the most recent publications in the synchrotrons' scenario where soft X-ray spectro-microscopy has been employed in life science as well as in environmental research.


Assuntos
Microscopia , Síncrotrons , Microscopia/métodos , Raios X , Radiografia , Espectroscopia por Absorção de Raios X
8.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835578

RESUMO

This study aimed to assess the potential of a multidimensional approach to differentiate body hairs based on their physico-chemical properties and whether body hairs can replace the use of scalp hair in studies linked to forensic and systemic intoxication. This is the first case report controlling for confounding variables to explore the utility of multidimensional profiling of body hair using synchrotron synchrotron microbeam X-ray fluorescence (SR-XRF) for longitudinal and hair morphological region mapping) and benchtop methods, including attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) (complemented with chemometrics analysis), energy dispersive X-ray analysis (EDX) (complemented with heatmap analysis), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) analysis (complemented by descriptive statistics) to profile different body hairs in terms of their elemental, biochemical, thermal, and cuticle properties. This multidimensional approach provided supportive information to emphasize the intricate and rather complex interplay between the organization and levels of elements and biomolecules within the crystalline and amorphous matrix of different body hairs responsible for the differences in physico-chemical properties between body hairs that are predominantly affected by the growth rate, follicle or apocrine gland activity, and external factors such as cosmetic use and exposure to environmental xenobiotics. The data from this study may have important implications for forensic science, toxicology and systemic intoxication, or other studies involving hair as a research matrix.


Assuntos
Corpo Humano , Síncrotrons , Humanos , Raios X , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Microscopia Eletrônica de Varredura , Varredura Diferencial de Calorimetria , Cabelo/química , Proteínas Mutadas de Ataxia Telangiectasia
9.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674849

RESUMO

The need to identify effective therapies for the treatment of psychiatric disorders is a particularly important issue in modern societies. In addition, difficulties in finding new drugs have led pharmacologists to review and re-evaluate some past molecules, including psychedelics. For several years there has been growing interest among psychotherapists in psilocybin or lysergic acid diethylamide for the treatment of obsessive-compulsive disorder, of depression, or of post-traumatic stress disorder, although results are not always clear and definitive. In fact, the mechanisms of action of psychedelics are not yet fully understood and some molecular aspects have yet to be well defined. Thus, this review aims to summarize the ethnobotanical uses of the best-known psychedelic plants and the pharmacological mechanisms of the main active ingredients they contain. Furthermore, an up-to-date overview of structural and computational studies performed to evaluate the affinity and binding modes to biologically relevant receptors of ibogaine, mescaline, N,N-dimethyltryptamine, psilocin, and lysergic acid diethylamide is presented. Finally, the most recent clinical studies evaluating the efficacy of psychedelic molecules in some psychiatric disorders are discussed and compared with drugs already used in therapy.


Assuntos
Alucinógenos , Ibogaína , Humanos , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Dietilamida do Ácido Lisérgico/uso terapêutico , Dietilamida do Ácido Lisérgico/farmacologia , Neurofarmacologia , Mescalina
10.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834956

RESUMO

An improved understanding of an ovary's structures is highly desirable to support advances in folliculogenesis knowledge and reproductive medicine, with particular attention to fertility preservation options for prepubertal girls with malignant tumors. Although currently the golden standard for structural analysis is provided by combining histological sections, staining, and visible 2D microscopic inspection, synchrotron radiation phase-contrast microtomography is becoming a new challenge for three-dimensional studies at micrometric resolution. To this aim, the proper use of contrast agents can improve the visualization of internal structures in ovary tissues, which normally present a low radiopacity. In this study, we report a comparison of four staining protocols, based on iodine or tungsten containing agents, applied to bovine ovarian tissues fixed in Bouin's solution. The microtomography (microCT) analyses at two synchrotron facilities under different set-ups were performed at different energies in order to maximize the image contrast. While tungsten-based agents allow large structures to be well identified, Iodine ones better highlight smaller features, especially when acquired above the K-edge energy of the specific metal. Further scans performed at lower energy where the setup was optimized for overall quality and sensitivity from phase-contrast still provided highly resolved visualization of follicular and intrafollicular structures at different maturation stages, independent of the staining protocol. The analyses were complemented by X-ray Fluorescence mapping on 2D sections, showing that the tungsten-based agent has a higher penetration in this type of tissues.


Assuntos
Imageamento Tridimensional , Iodo , Humanos , Feminino , Animais , Bovinos , Imageamento Tridimensional/métodos , Microscopia , Raios X , Microtomografia por Raio-X/métodos , Ovário , Tungstênio , Meios de Contraste/química
11.
Molecules ; 28(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838979

RESUMO

BACKGROUND: Although X-ray fluorescence microscopy is becoming a widely used technique for single-cell analysis, sample preparation for this microscopy remains one of the main challenges in obtaining optimal conditions for the measurements in the X-ray regime. The information available to researchers on sample treatment is inadequate and unclear, sometimes leading to wasted time and jeopardizing the experiment's success. Many cell fixation methods have been described, but none of them have been systematically tested and declared the most suitable for synchrotron X-ray microscopy. METHODS: The HEC-1-A endometrial cells, human spermatozoa, and human embryonic kidney (HEK-293) cells were fixed with organic solvents and cross-linking methods: 70% ethanol, 3.7%, and 2% paraformaldehyde; in addition, HEK-293 cells were subjected to methanol/ C3H6O treatment and cryofixation. Fixation methods were compared by coupling low-energy X-ray fluorescence with scanning transmission X-ray microscopy and atomic force microscopy. RESULTS: Organic solvents lead to greater dehydration of cells, which has the most significant effect on the distribution and depletion of diffusion elements. Paraformaldehyde provides robust and reproducible data. Finally, the cryofixed cells provide the best morphology and element content results. CONCLUSION: Although cryofixation seems to be the most appropriate method as it allows for keeping cells closer to physiological conditions, it has some technical limitations. Paraformaldehyde, when used at the average concentration of 3.7%, is also an excellent alternative for X-ray microscopy.


Assuntos
Raios X , Humanos , Células HEK293 , Radiografia , Microscopia de Força Atômica
12.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903316

RESUMO

Ovarian cancer represents a major health concern for the female population: there is no obvious cause, it is frequently misdiagnosed, and it is characterized by a poor prognosis. Additionally, patients are inclined to recurrences because of metastasis and poor treatment tolerance. Combining innovative therapeutic techniques with established approaches can aid in improving treatment outcomes. Because of their multi-target actions, long application history, and widespread availability, natural compounds have particular advantages in this connection. Thus, effective therapeutic alternatives with improved patient tolerance hopefully can be identified within the world of natural and nature-derived products. Moreover, natural compounds are generally perceived to have more limited adverse effects on healthy cells or tissues, suggesting their potential role as valid treatment alternatives. In general, the anticancer mechanisms of such molecules are connected to the reduction of cell proliferation and metastasis, autophagy stimulation and improved response to chemotherapeutics. This review aims at discussing the mechanistic insights and possible targets of natural compounds against ovarian cancer, from the perspective of medicinal chemists. In addition, an overview of the pharmacology of natural products studied to date for their potential application towards ovarian cancer models is presented. The chemical aspects as well as available bioactivity data are discussed and commented on, with particular attention to the underlying molecular mechanism(s).


Assuntos
Produtos Biológicos , Neoplasias Ovarianas , Feminino , Humanos , Produtos Biológicos/química , Proliferação de Células , Neoplasias Ovarianas/tratamento farmacológico
13.
Sensors (Basel) ; 22(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35746377

RESUMO

In hard X-ray applications that require high detection efficiency and short response times, such as synchrotron radiation-based Mössbauer absorption spectroscopy and time-resolved fluorescence or photon beam position monitoring, III-V-compound semiconductors, and dedicated alloys offer some advantages over the Si-based technologies traditionally used in solid-state photodetectors. Amongst them, gallium arsenide (GaAs) is one of the most valuable materials thanks to its unique characteristics. At the same time, implementing charge-multiplication mechanisms within the sensor may become of critical importance in cases where the photogenerated signal needs an intrinsic amplification before being acquired by the front-end electronics, such as in the case of a very weak photon flux or when single-photon detection is required. Some GaAs-based avalanche photodiodes (APDs) were grown by a molecular beam epitaxy to fulfill these needs; by means of band gap engineering, we realised devices with separate absorption and multiplication region(s) (SAM), the latter featuring a so-called staircase structure to reduce the multiplication noise. This work reports on the experimental characterisations of gain, noise, and charge collection efficiencies of three series of GaAs APDs featuring different thicknesses of the absorption regions. These devices have been developed to investigate the role of such thicknesses and the presence of traps or defects at the metal-semiconductor interfaces responsible for charge loss, in order to lay the groundwork for the future development of very thick GaAs devices (thicker than 100 µm) for hard X-rays. Several measurements were carried out on such devices with both lasers and synchrotron light sources, inducing photon absorption with X-ray microbeams at variable and controlled depths. In this way, we verified both the role of the thickness of the absorption region in the collection efficiency and the possibility of using the APDs without reaching the punch-through voltage, thus preventing the noise induced by charge multiplication in the absorption region. These devices, with thicknesses suitable for soft X-ray detection, have also shown good characteristics in terms of internal amplification and reduction of multiplication noise, in line with numerical simulations.

14.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555489

RESUMO

The work focused on the analysis of two cultivars of tomato (Solanum lycopersicum L.), Aragon and Gladis, under two different treatments of silicon, Low, 2 L of 0.1 mM CaSiO3, and High, 0.5 mM CaSiO3, weekly, for 8 weeks, under stress-free conditions. We subsequently analyzed the morphology, chemical composition, and elemental distribution using synchrotron-based µ-XRF techniques, physiological, and molecular aspects of the response of the two cultivars. The scope of the study was to highlight any significant response of the plants to the Si treatments, in comparison with any response to Si of plants under stress. The results demonstrated that the response was mainly cultivar-dependent, also at the level of mitochondrial-dependent oxidative stress, and that it did not differ from the two conditions of treatments. With Si deposited mainly in the cell walls of the cells of fruits, leaves, and roots, the treatments did not elicit many significant changes from the point of view of the total elemental content, the physiological parameters that measured the oxidative stress, and the transcriptomic analyses focalized on genes related to the response to Si. We observed a priming effect of the treatment on the most responsive cultivar, Aragon, in respect to future stress, while in Gladis the Si treatment did not significantly change the measured parameters.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Silício/farmacologia , Síncrotrons , Estresse Oxidativo , Perfilação da Expressão Gênica
15.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163075

RESUMO

Gremlin-1 is a secreted cystine-knot protein that acts as an antagonist of bone morphogenetic proteins (BMPs), and as a ligand of heparin and the vascular endothelial growth factor receptor 2 (VEGFR2), thus regulating several physiological and pathological processes, including embryonic development, tissue fibrosis and cancer. Gremlin-1 exerts all these biological activities only in its homodimeric form. Here, we propose a multi-step approach for the expression and purification of homodimeric, fully active, histidine-tagged recombinant gremlin-1, using mammalian HEK293T cells. Ion metal affinity chromatography (IMAC) of crude supernatant followed by heparin-affinity chromatography enables obtaining a highly pure recombinant dimeric gremlin-1 protein, exhibiting both BMP antagonist and potent VEGFR2 agonist activities.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Cromatografia de Afinidade/métodos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Recombinantes/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/agonistas , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/isolamento & purificação , Proteínas Recombinantes/genética
16.
Curr Issues Mol Biol ; 44(1): 117-127, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35723388

RESUMO

Hepcidin and ferritin are key proteins of iron homeostasis in mammals. In this study, we characterize a chimera by fusing camel hepcidin to a human ferritin H-chain to verify if it retained the properties of the two proteins. The construct (HepcH) is expressed in E. coli in an insoluble and iron-containing form. To characterize it, the product was incubated with ascorbic acid and TCEP to reduce and solubilize the iron, which was quantified with ferrozine. HepcH bound approximately five times more iron than the wild type human ferritin, due to the presence of the hepcidin moiety. To obtain a soluble and stable product, the chimera was denatured and renatured together with different amounts of L-ferritin of the H-chain in order to produce 24-shell heteropolymers with different subunit proportions. They were analyzed by denaturing and non-denaturing PAGE and by mass spectroscopy. At the 1:5 ratio of HepcH to H- or L-ferritin, a stable and soluble molecule was obtained. Its biological activity was verified by its ability to both bind specifically cell lines that express ferroportin and to promote ferroportin degradation. This chimeric molecule showed the ability to bind both mouse J774 macrophage cells, as well as human HepG2 cells, via the hepcidin-ferroportin axis. We conclude that the chimera retains the properties of both hepcidin and ferritin and might be exploited for drug delivery.

17.
J Synchrotron Radiat ; 28(Pt 1): 231-239, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399573

RESUMO

Radiation damage upon soft X-ray exposure is an important issue to be considered in soft X-ray microscopy. The work presented here is part of a more extended study on the topic and focuses on the effects of soft X-rays on paraffin, a common embedding medium for soft-tissues, and on ultralene and Si3N4 windows as sample supports. Our studies suggest that the sample environment indeed plays an important role in the radiation damage process and therefore should be carefully taken into account for the analysis and interpretation of new data. The radiation damage effects were followed over time using a combination of Fourier transform infrared (FTIR) microspectroscopy and X-ray fluorescence (XRF), and it was demonstrated that, for higher doses, an oxidation of both embedding medium and ultralene substrate takes place after the irradiated sample is exposed to air. This oxidation is reflected in a clear increase of C=O and O-H infrared bands and on the XRF oxygen maps, correlated with a decrease of the aliphatic infrared signal. The results also show that the oxidation process may affect quantitative evaluation of light element concentrations.


Assuntos
Parafina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fluorescência , Oxirredução , Inclusão em Parafina , Raios X
18.
Analyst ; 146(19): 5836-5842, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34378555

RESUMO

Soft X-ray microscopy coupled with low energy X-ray fluorescence is a powerful tool for investigating complex biological systems like cells and tissues. Due to certain characteristics of X-ray sources, sample stage motors, and detectors, the examination of large areas at high resolutions is very time consuming, often confining the analysis only to a restricted number of pre-selected representative regions. Here we propose and demonstrate a compressive sensing method that provides an alternative approach for overcoming such limitations and can be applied to different kinds of samples and other microscopy and analytical techniques.


Assuntos
Microscopia , Radiografia , Cintilografia , Raios X
19.
J Chem Inf Model ; 61(6): 2780-2787, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34043356

RESUMO

In the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) genome, open reading frames (ORFs) encode for viral accessory proteins. Among these, Orf7a structurally resembles the members of the immunoglobulin (Ig) superfamily and intracellular adhesion molecules (ICAMs), in particular. ICAMs are involved in integrin binding through lymphocyte function-associated antigen 1 (LFA-1). Based on such considerations and on previous findings on SARS-CoV, it has been postulated that the formation of the LFA-1/Orf7a complex could contribute to SARS-CoV-2 infectivity and pathogenicity. With the current work, we aim at providing insight into this macromolecular assembly, taking advantage of the recently reported SARS-CoV-2 Orf7a structure. Protein-protein docking, molecular dynamics (MD) simulations, and a Molecular Mechanical-Generalized Born Surface Area (MM-GBSA)-based stage were enrolled to provide refined models.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antígeno-1 Associado à Função Linfocitária , Simulação de Acoplamento Molecular , Proteínas Virais
20.
Environ Sci Technol ; 55(15): 10769-10783, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34308629

RESUMO

A thorough understanding of the implications of chronic low-dose exposure to engineered nanomaterials through the food chain is lacking. The present study aimed to characterize such a response in Cucurbita pepo L. (zucchini) upon exposure to a potential nanoscale fertilizer: copper oxide (CuO) nanoparticles. Zucchini was grown in soil amended with nano-CuO, bulk CuO (100 mg Kg-1), and CuSO4 (320 mg Kg-1) from germination to flowering (60 days). Nano-CuO treatment had no impact on plant morphology or growth nor pollen formation and viability. The uptake of Cu was comparable in the plant tissues under all treatments. RNA-seq analyses on vegetative and reproductive tissues highlighted common and nanoscale-specific components of the response. Mitochondrial and chloroplast functions were uniquely modulated in response to nanomaterial exposure as compared with conventional bulk and salt forms. X-ray absorption spectroscopy showed that the Cu local structure changed upon nano-CuO internalization, suggesting potential nanoparticle biotransformation within the plant tissues. These findings demonstrate the potential positive physiological, cellular, and molecular response related to nano-CuO application as a plant fertilizer, highlighting the differential mechanisms involved in the exposure to Cu in nanoscale, bulk, or salt forms. Nano-CuO uniquely stimulates plant response in a way that can minimize agrochemical inputs to the environment and therefore could be an important strategy in nanoenabled agriculture.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Nanoestruturas , Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Óxidos , Raízes de Plantas , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA