Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 111(16): 166101, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24182283

RESUMO

We show ferromagnetic properties of hydrogen-functionalized epitaxial graphene on SiC. Ferromagnetism in such a material is not directly evident as it is inherently composed of only nonmagnetic constituents. Our results nevertheless show strong ferromagnetism with a saturation of 0.9µ(B)/hexagon projected area, which cannot be explained by simple magnetic impurities. The ferromagnetism is unique to hydrogenated epitaxial graphene on SiC, where interactions with the interfacial buffer layer play a crucial role. We argue that the origin of the observed ferromagnetism is governed by electron correlation effects of the narrow Si dangling bond states in the buffer layer exchange coupled to localized states in the hydrogenated graphene layer. This forms a quasi-three-dimensional ferromagnet with a Curie temperature higher than 300 K.

3.
Phys Rev Lett ; 99(20): 206803, 2007 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-18233175

RESUMO

We have measured the quantum-Hall activation gaps in graphene at filling factors nu=2 and nu=6 for magnetic fields up to 32 T and temperatures from 4 to 300 K. The nu=6 gap can be described by thermal excitation to broadened Landau levels with a width of 400 K. In contrast, the gap measured at nu=2 is strongly temperature and field dependent and approaches the expected value for sharp Landau levels for fields B>20 T and temperatures T>100 K. We explain this surprising behavior by a narrowing of the lowest Landau level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA