Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(5): 2603-2642, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38305761

RESUMO

Humans and other animals produce a diverse collection of antibodies, many of which bind to carbohydrate chains, referred to as glycans. These anti-glycan antibodies are a critical part of our immune systems' defenses. Whether induced by vaccination or natural exposure to a pathogen, anti-glycan antibodies can provide protection against infections and cancers. Alternatively, when an immune response goes awry, antibodies that recognize self-glycans can mediate autoimmune diseases. In any case, serum anti-glycan antibodies provide a rich source of information about a patient's overall health, vaccination history, and disease status. Glycan microarrays provide a high-throughput platform to rapidly interrogate serum anti-glycan antibodies and identify new biomarkers for a variety of conditions. In addition, glycan microarrays enable detailed analysis of the immune system's response to vaccines and other treatments. Herein we review applications of glycan microarray technology for serum anti-glycan antibody profiling.


Assuntos
Polissacarídeos , Vacinas , Animais , Humanos , Polissacarídeos/metabolismo , Anticorpos , Carboidratos , Análise em Microsséries
2.
Artigo em Inglês | MEDLINE | ID: mdl-38692308

RESUMO

BACKGROUND: Autoimmune cytopenias (AICs) regularly occur in profoundly IgG-deficient patients with common variable immunodeficiency (CVID). The isotypes, antigenic targets, and origin(s) of their disease-causing autoantibodies are unclear. OBJECTIVE: We sought to determine reactivity, clonality, and provenance of AIC-associated IgM autoantibodies in patients with CVID. METHODS: We used glycan arrays, patient erythrocytes, and platelets to determine targets of CVID IgM autoantibodies. Glycan-binding profiles were used to identify autoreactive clones across B-cell subsets, specifically circulating marginal zone (MZ) B cells, for sorting and IGH sequencing. The locations, transcriptomes, and responses of tonsillar MZ B cells to different TH- cell subsets were determined by confocal microscopy, RNA-sequencing, and cocultures, respectively. RESULTS: Autoreactive IgM coated erythrocytes and platelets from many CVID patients with AICs (CVID+AIC). On glycan arrays, CVID+AIC plasma IgM narrowly recognized erythrocytic i antigens and platelet i-related antigens and failed to bind hundreds of pathogen- and tumor-associated carbohydrates. Polyclonal i antigen-recognizing B-cell receptors were highly enriched among CVID+AIC circulating MZ B cells. Within tonsillar tissues, MZ B cells secreted copious IgM when activated by the combination of IL-10 and IL-21 or when cultured with IL-10/IL-21-secreting FOXP3-CD25hi T follicular helper (Tfh) cells. In lymph nodes from immunocompetent controls, MZ B cells, plentiful FOXP3+ regulatory T cells, and rare FOXP3-CD25+ cells that represented likely CD25hi Tfh cells all localized outside of germinal centers. In CVID+AIC lymph nodes, cellular positions were similar but CD25hi Tfh cells greatly outnumbered regulatory cells. CONCLUSIONS: Our findings indicate that glycan-reactive IgM autoantibodies produced outside of germinal centers may contribute to the autoimmune pathogenesis of CVID.

3.
J Biol Chem ; 298(10): 102468, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087840

RESUMO

The immune system produces a diverse collection of antiglycan antibodies that are critical for host defense. At present, however, we know very little about the binding properties, origins, and sequences of these antibodies because of a lack of access to a variety of defined individual antibodies. To address this challenge, we used a glycan microarray with over 800 different components to screen a panel of 516 human monoclonal antibodies that had been randomly cloned from different B-cell subsets originating from healthy human subjects. We obtained 26 antiglycan antibodies, most of which bound microbial carbohydrates. The majority of the antiglycan antibodies identified in the screen displayed selective binding for specific glycan motifs on our array and lacked polyreactivity. We found that antiglycan antibodies were about twice as likely than expected to originate from IgG+ memory B cells, whereas none were isolated from naïve, early emigrant, or immature B cells. Therefore, our results indicate that certain B-cell subsets in our panel are enriched in antiglycan antibodies, and IgG+ memory B cells may be a promising source of such antibodies. Furthermore, some of the newly identified antibodies bound glycans for which there are no reported monoclonal antibodies available, and these may be useful as research tools, diagnostics, or therapeutic agents. Overall, the results provide insight into the types and properties of antiglycan antibodies produced by the human immune system and a framework for the identification of novel antiglycan antibodies in the future.


Assuntos
Anticorpos Monoclonais , Polissacarídeos , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Carboidratos , Imunoglobulina G/imunologia , Análise em Microsséries , Polissacarídeos/metabolismo , Células B de Memória/imunologia
4.
Angew Chem Int Ed Engl ; 62(47): e202309744, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37781858

RESUMO

Sialyl Lewisa (sLea ), also known as cancer antigen 19-9 (CA19-9), is a tumor-associated carbohydrate antigen. The overexpression of sLea on the surface of a variety of cancer cells makes it an attractive target for anticancer immunotherapy. However, sLea -based anticancer vaccines have been under-explored. To develop a new vaccine, efficient stereoselective synthesis of sLea with an amine-bearing linker was achieved, which was subsequently conjugated with a powerful carrier bacteriophage, Qß. Mouse immunization with the Qß-sLea conjugate generated strong and long-lasting anti-sLea IgG antibody responses, which were superior to those induced by the corresponding conjugate of sLea with the benchmark carrier keyhole limpet hemocyanin. Antibodies elicited by Qß-sLea were highly selective toward the sLea structure, could bind strongly with sLea -expressing cancer cells and human pancreatic cancer tissues, and kill tumor cells through complement-mediated cytotoxicity. Furthermore, vaccination with Qß-sLea significantly reduced tumor development in a metastatic cancer model in mice, demonstrating tumor protection for the first time by a sLea -based vaccine, thus highlighting the significant potential of sLea as a promising cancer antigen.


Assuntos
Bacteriófagos , Vacinas Anticâncer , Neoplasias , Camundongos , Humanos , Animais , Antígeno CA-19-9 , Vacinas Anticâncer/química , Imunoglobulina G/metabolismo
5.
Infect Immun ; 90(2): e0057221, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34807735

RESUMO

Enterotoxigenic Escherichia coli (ETEC) isolates are genetically diverse pathological variants of E. coli defined by the production of heat-labile (LT) and/or heat-stable (ST) toxins. ETEC strains are estimated to cause hundreds of millions of cases of diarrheal illness annually. However, it is not clear that all strains are equally equipped to cause disease, and asymptomatic colonization with ETEC is common in low- to middle-income regions lacking basic sanitation and clean water where ETEC are ubiquitous. Recent molecular epidemiology studies have revealed a significant association between strains that produce EatA, a secreted autotransporter protein, and the development of symptomatic infection. Here, we demonstrate that LT stimulates production of MUC2 mucin by goblet cells in human small intestine, enhancing the protective barrier between pathogens and enterocytes. In contrast, using explants of human small intestine as well as small intestinal enteroids, we show that EatA counters this host defense by engaging and degrading the MUC2 mucin barrier to promote bacterial access to target enterocytes and ultimately toxin delivery, suggesting that EatA plays a crucial role in the molecular pathogenesis of ETEC. These findings may inform novel approaches to prevention of acute diarrheal illness as well as the sequelae associated with ETEC and other pathogens that rely on EatA and similar proteases for efficient interaction with their human hosts.


Assuntos
Toxinas Bacterianas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Diarreia , Enterócitos , Escherichia coli Enterotoxigênica/metabolismo , Enterotoxinas/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Intestino Delgado , Mucina-2/genética , Mucina-2/metabolismo , Mucinas/metabolismo
6.
J Am Chem Soc ; 144(11): 4925-4941, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35282679

RESUMO

Germline antibodies, the initial set of antibodies produced by the immune system, are critical for host defense, and information about their binding properties can be useful for designing vaccines, understanding the origins of autoantibodies, and developing monoclonal antibodies. Numerous studies have found that germline antibodies are polyreactive with malleable, flexible binding pockets. While insightful, it remains unclear how broadly this model applies, as there are many families of antibodies that have not yet been studied. In addition, the methods used to obtain germline antibodies typically rely on assumptions and do not work well for many antibodies. Herein, we present a distinct approach for isolating germline antibodies that involves immunizing activation-induced cytidine deaminase (AID) knockout mice. This strategy amplifies antigen-specific B cells, but somatic hypermutation does not occur because AID is absent. Using synthetic haptens, glycoproteins, and whole cells, we obtained germline antibodies to an assortment of clinically important tumor-associated carbohydrate antigens, including Lewis Y, the Tn antigen, sialyl Lewis C, and Lewis X (CD15/SSEA-1). Through glycan microarray profiling and cell binding, we demonstrate that all but one of these germline antibodies had high selectivity for their glycan targets. Using molecular dynamics simulations, we provide insights into the structural basis of glycan recognition. The results have important implications for designing carbohydrate-based vaccines, developing anti-glycan monoclonal antibodies, and understanding antibody evolution within the immune system.


Assuntos
Anticorpos Monoclonais , Antígenos Glicosídicos Associados a Tumores , Animais , Anticorpos Monoclonais/química , Biomarcadores Tumorais , Carboidratos , Células Germinativas , Camundongos , Camundongos Knockout , Polissacarídeos/química
7.
J Am Chem Soc ; 144(36): 16410-16422, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36054098

RESUMO

Glycosylation is a vital post-translational modification involved in a range of biological processes including protein folding, signaling, and cell-cell interactions. In 2011, a new type of O-linked glycosylation was discovered, wherein the side-chain oxygen of tyrosine is modified with a GalNAc residue (GalNAc-Tyr). At present, very little is known about GalNAc-Tyr prevalence, function, or biosynthesis. Herein, we describe the design and synthesis of a GalNAc-Tyr-derived hapten and its use in generating a GalNAc-Tyr selective monoclonal antibody. The antibody, G10C, has an unusually high affinity (app KD = 100 pM) and excellent selectivity for GalNAc-Tyr. We also obtained a crystal structure of the G10C Fab region in complex with 4-nitrophenyl-N-acetyl-α-d-galactosaminide (a small molecule mimic of GalNAc-Tyr) providing insights into the structural basis for high affinity and selectivity. Using this antibody, we discovered that GalNAc-Tyr is widely expressed in most human tissues, indicating that it is a ubiquitous and underappreciated post-translational modification. Localization to specific cell types and organ substructures within those tissues indicates that GalNAc-Tyr is likely regulated in a cell-specific manner. GalNAc-Tyr was also observed in a variety of cell lines and primary cells but was only present on the external cell surface in certain cancer cell lines, suggesting that GalNAc-Tyr localization may be altered in cancer cells. Collectively, the results shed new light on this under-studied form of glycosylation and provide access to new tools that will enable expanded biochemical and clinical investigations.


Assuntos
Anticorpos Monoclonais , N-Acetilgalactosaminiltransferases , Anticorpos Monoclonais/metabolismo , Linhagem Celular , Glicosilação , Humanos , N-Acetilgalactosaminiltransferases/metabolismo , Tirosina/metabolismo
8.
Bioconjug Chem ; 33(7): 1350-1362, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35687881

RESUMO

N-Glycosylation plays an important role in many biological recognition processes. However, very few N-glycan-specific antibodies are available for functional studies and potentially for therapeutic development. In this study, we sought to synthesize bacteriophage Qß conjugates with representative N-glycans and investigate their immunogenicity for raising N-glycan-specific antibodies. An array of Qß glycoconjugates bearing five different human N-glycans and two different chemical linkers were synthesized, and the immunization of the N-glycan-Qß conjugates was performed in mice. We found that the N-glycan-Qß conjugates raised significant IgG antibodies that recognize N-glycans, but, surprisingly, most of the glycan-dependent antibodies were directed to the shared chitobiose core and were nonspecific for respective N-glycan structures. The linker chemistry was found to affect antibody specificity with adipic acid-linked N-glycan-Qß immunogens raising antibodies capable of recognizing both the N-acetylglucosamine (GlcNAc) moieties of the chitobiose core. In contrast, antibodies raised by N-glycan-Qß immunogens with a triazole linker preferentially recognized the innermost N-acetylglucosamine moiety at the reducing end. We also found that sialylation of the N-glycans significantly suppressed the immune response. Furthermore, the N-glycan-Qß immunogens with an adipic acid linker elicited higher glycan-specific antibody titers than the N-glycan-triazole-Qß immunogens. These findings delineate several challenges in eliciting mammalian N-glycan-specific antibodies through the conventional glycoconjugate vaccine design and immunization.


Assuntos
Acetilglucosamina , Formação de Anticorpos , Allolevivirus/química , Animais , Antígenos , Dissacarídeos , Glicoconjugados , Humanos , Mamíferos , Camundongos , Polissacarídeos/química , Triazóis
9.
Biochem J ; 478(8): 1485-1509, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33881487

RESUMO

Carbohydrate-binding antibodies play diverse and critical roles in human health. Endogenous carbohydrate-binding antibodies that recognize bacterial, fungal, and other microbial carbohydrates prevent systemic infections and help maintain microbiome homeostasis. Anti-glycan antibodies can have both beneficial and detrimental effects. For example, alloantibodies to ABO blood group carbohydrates can help reduce the spread of some infectious diseases, but they also impose limitations for blood transfusions. Antibodies that recognize self-glycans can contribute to autoimmune diseases, such as Guillain-Barre syndrome. In addition to endogenous antibodies that arise through natural processes, a variety of vaccines induce anti-glycan antibodies as a primary mechanism of protection. Some examples of approved carbohydrate-based vaccines that have had a major impact on human health are against pneumococcus, Haemophilus influeanza type b, and Neisseria meningitidis. Monoclonal antibodies specifically targeting pathogen associated or tumor associated carbohydrate antigens (TACAs) are used clinically for both diagnostic and therapeutic purposes. This review aims to highlight some of the well-studied and critically important applications of anti-carbohydrate antibodies.


Assuntos
Síndrome de Guillain-Barré/imunologia , Infecções por Haemophilus/imunologia , Meningite Meningocócica/imunologia , Pneumonia Pneumocócica/imunologia , Polissacarídeos/imunologia , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/uso terapêutico , Autoanticorpos/biossíntese , Autoanticorpos/sangue , Vacinas Bacterianas/biossíntese , Vacinas Bacterianas/uso terapêutico , Sequência de Carboidratos , Síndrome de Guillain-Barré/patologia , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/prevenção & controle , Vacinas Anti-Haemophilus/biossíntese , Vacinas Anti-Haemophilus/uso terapêutico , Haemophilus influenzae/imunologia , Humanos , Meningite Meningocócica/microbiologia , Meningite Meningocócica/prevenção & controle , Neisseria meningitidis/imunologia , Vacinas Pneumocócicas/biossíntese , Vacinas Pneumocócicas/uso terapêutico , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/prevenção & controle , Polissacarídeos/antagonistas & inibidores , Polissacarídeos/química , Streptococcus pneumoniae/imunologia
10.
Bioconjug Chem ; 32(1): 133-142, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33325683

RESUMO

Biological conjugation is an important tool employed for many basic research and clinical applications. While useful, common methods of biological conjugation suffer from a variety of limitations, such as (a) requiring the presence of specific surface-exposed residues, such as lysines or cysteines, (b) reducing protein activity, and/or (c) reducing protein stability and solubility. Use of photoreactive moieties including diazirines, azides, and benzophenones provide an alternative, mild approach to conjugation. Upon irradiation with UV and visible light, these functionalities generate highly reactive carbenes, nitrenes, and radical intermediates. Many of these will couple to proteins in a non-amino-acid-specific manner. The main hurdle for photoactivated biological conjugation is very low yield. In this study, we developed a solid-state method to increase conjugation efficiency of diazirine-containing carbohydrates to proteins. Using this methodology, we produced multivalent carbohydrate-protein conjugates with unaltered protein charge and secondary structure. Compared to carbohydrate conjugates prepared with amide linkages to lysine residues using standard NHS conjugation, the photoreactive prepared conjugates displayed up to 100-fold improved binding to lectins and diminished immunogenicity in mice. These results indicate that photoreactive bioconjugation could be especially useful for in vivo applications, such as lectin targeting, where high binding affinity and low immunogenicity are desired.


Assuntos
Carboidratos/química , Diazometano/metabolismo , Glicoconjugados/química , Luz , Animais , Sítios de Ligação , Camundongos
11.
Angew Chem Int Ed Engl ; 60(45): 24179-24188, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34469031

RESUMO

Ganglioside GD2 is an attractive tumor-associated carbohydrate antigen for anti-cancer vaccine development. However, its low immunogenicity and the significant side effects observed with anti-GD2 antibodies present significant obstacles for vaccines. To overcome these, a new GD2 derivative bearing an N-acetamide (NHAc) at its non-reducing end neuraminic acid (9NHAc-GD2) has been designed to mimic the 9-O-acetylated-GD2 (9OAc-GD2), a GD2 based antigen with a restricted expression on tumor cells. 9NHAc-GD2 was synthesized efficiently via a chemoenzymatic method and subsequently conjugated with a powerful carrier bacteriophage Qß. Mouse immunization with the Qß-9NHAc-GD2 conjugate elicited strong and long-lasting IgG antibodies, which were highly selective toward 9NHAc-GD2 with little cross-recognition of GD2. Immunization of canines with Qß-9NHAc-GD2 showed the construct was immunogenic in canines with little adverse effects, paving the way for future clinical translation to humans.


Assuntos
Vacinas Anticâncer/química , Gangliosídeos/síntese química , Vacinas Conjugadas/química , Acetamidas/química , Acetamidas/imunologia , Acetilação , Animais , Vacinas Anticâncer/imunologia , Configuração de Carboidratos , Gangliosídeos/química , Gangliosídeos/imunologia , Hidrólise , Camundongos , Ácidos Neuramínicos/química , Ácidos Neuramínicos/imunologia , Desenvolvimento de Vacinas , Vacinas Conjugadas/imunologia
12.
Xenotransplantation ; 27(2): e12567, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31762117

RESUMO

BACKGROUND: Engineering of α-Galactosyltransferase gene-knockout pigs circumvented hyperacute rejection of pig organs after xenotransplantation in non-human primates. Overcoming this hurdle revealed the importance of non-α-Gal carbohydrate antigens in the immunobiology of acute humoral xenograft rejection. METHODS: This study analyzed serum from seven naïve cynomolgus monkeys (blood type O/B/AB = 3/2/2) for the intensity of natural IgM and IgG signals using carbohydrate antigen microarray, which included historically reported α-Gal and non-α-Gal carbohydrate antigens with various modifications. RESULTS: The median (range) of IgM and IgG signals were 12.71 (7.23-16.38) and 9.05 (7.23-15.90), respectively. The highest IgM and IgG signals with narrowest distribution were from mono- and disaccharides, followed by modified structures. Natural anti-α-Gal antibody signals were medium to high in IgM (11.2-15.9) and medium in IgG (8.5-11.6) spectra, and was highest with Lac core structure (Galα1-3Galß1-4Glc, iGb3) and lowest with LacNAc core structure (Galα1-3Galß1-4GlcNAc). Similar signal intensities (up to 15.8 in IgM and up to 11.8 in IgG) were observed for historically detected natural non-α-Gal antigens, which included Tn antigen, T antigen, GM2 glycolipid, and Sda antigen. The hierarchical clustering analysis revealed the presence of clusters of anti-A antibodies and was capable of distinguishing between the blood group B and AB non-human primates. CONCLUSIONS: The results presented here provide the most comprehensive evaluation of natural antibodies present in cynomolgus monkeys.


Assuntos
Anticorpos/sangue , Antígenos Heterófilos/imunologia , Rejeição de Enxerto/imunologia , Xenoenxertos/imunologia , Animais , Anticorpos/imunologia , Dissacarídeos/imunologia , Galactosiltransferases/imunologia , Macaca fascicularis , Primatas , Transplante Heterólogo/métodos
13.
Faraday Discuss ; 219(0): 90-111, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31338503

RESUMO

Protein-carbohydrate interactions play significant roles in a wide variety of biological systems. Glycan microarrays are commonly utilized to interrogate the selectivity, sensitivity, and breadth of these complex protein-carbohydrate interactions. During the past two decades, numerous distinct glycan microarray platforms have been developed, each assembled from a variety of slide-surface chemistries, glycan-attachment chemistries, glycan presentations, linkers, and glycan densities. Comparative analyses of glycan microarray data have shown that while many protein-carbohydrate interactions behave predictably across microarrays, there are instances when various array formats produce different results. For optimal construction and use of this technology, it is important to understand sources of variances across array platforms. In this study, we performed a systematic comparison of microarray data from 8 lectins across a range of concentrations on the CFG and neoglycoprotein array platforms. While there was good general agreement on the binding specificity of the lectins on the two arrays, there were some cases of large discrepancies. Differences in glycan density and linker composition contributed significantly to variability. The results provide insights for interpreting microarray data and designing future glycan microarrays.


Assuntos
Lectinas/metabolismo , Análise em Microsséries/métodos , Polissacarídeos/metabolismo , Animais , Modelos Moleculares , Polissacarídeos/química , Ligação Proteica
14.
Proc Natl Acad Sci U S A ; 111(17): E1749-58, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733910

RESUMO

Therapeutic cancer vaccines can be effective for treating patients, but clinical responses vary considerably from patient to patient. Early indicators of a favorable response are crucial for making individualized treatment decisions and advancing vaccine design, but no validated biomarkers are currently available. In this study, we used glycan microarrays to profile antiglycan antibody responses induced by PROSTVAC-VF, a poxvirus-based cancer vaccine currently in phase III clinical trials. Although the vaccine is designed to induce T-cell responses to prostate-specific antigen, we demonstrate that this vaccine also induces humoral responses to a carbohydrate on the poxvirus, the Forssman disaccharide (GalNAcα1-3GalNAcß). These responses had a statistically significant correlation with overall survival in two independent sample sets (P = 0.015 and 0.008) comprising more than 100 patients. Additionally, anti-Forssman humoral responses correlated with clinical outcome in a separate study of PROSTVAC-VF combined with a radiopharmaceutical (Quadramet). Studies on control subjects demonstrated that the survival correlation was specific to the vaccine. The results provide evidence that antiglycan antibody responses may serve as early biomarkers of a favorable response to PROSTVAC-VF and offer unique insights for improving vaccine design.


Assuntos
Vacinas Anticâncer/imunologia , Vírus da Varíola das Aves Domésticas/imunologia , Imunidade Humoral/imunologia , Polissacarídeos/imunologia , Antígeno Prostático Específico/imunologia , Vaccinia virus/imunologia , Vacinas Virais/imunologia , Anticorpos Antineoplásicos/sangue , Formação de Anticorpos , Dissacarídeos/imunologia , Vetores Genéticos/imunologia , Glicômica , Humanos , Estimativa de Kaplan-Meier , Masculino , Polissacarídeos/sangue , Prognóstico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/prevenção & controle , Vacinação
15.
Glycobiology ; 26(5): 443-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26755806

RESUMO

Information about specificity and affinity is critical for use of carbohydrate-binding antibodies. Herein, we evaluated eight monoclonal antibodies to the blood group A (BG-A) antigen. Antibodies 87-G, 9A, HE-10, HE-24, HE-193, HE-195, T36 and Z2A were profiled on a glycan microarray to assess specificity, relative affinity and the influence of glycan density on recognition. Our studies highlight several noteworthy recognition properties. First, most antibodies bound GalNAcα1-3Gal and the BG-A trisaccharide nearly as well as larger BG-A oligosaccharides. Second, several antibodies only bound the BG-A trisaccharide when displayed on certain glycan chains. These first two points indicate that the carrier glycan chains primarily influence selectivity, rather than binding strength. Third, binding of some antibodies was highly dependent on glycan density, illustrating the importance of glycan presentation for recognition. Fourth, some antibodies recognized the tumor-associated Tn antigen, and one antibody only bound the variant composed of a GalNAc-alpha-linked to a serine residue. Collectively, these results provide new insights into the recognition properties of anti-BG-A antibodies.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Anticorpos Monoclonais Murinos/química , Trissacarídeos/química , Sistema ABO de Grupos Sanguíneos/imunologia , Anticorpos Monoclonais Murinos/imunologia , Humanos , Trissacarídeos/imunologia
16.
J Biol Chem ; 288(32): 23597-606, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23782692

RESUMO

Variable lymphocyte receptors (VLRs) are leucine-rich repeat proteins that mediate adaptive immunity in jawless vertebrates. VLRs were recently shown to recognize glycans, such as the tumor-associated Thomsen-Friedenreich antigen (TFα; Galß1-3GalNAcα), with a selectivity rivaling or exceeding that of lectins and antibodies. To understand the basis for TFα recognition by one such VLR (VLRB.aGPA.23), we measured thermodynamic parameters for the binding interaction and determined the structure of the VLRB.aGPA.23-TFα complex to 2.2 Å resolution. In the structure, four tryptophan residues form a tight hydrophobic cage encasing the TFα disaccharide that completely excludes buried water molecules. This cage together with hydrogen bonding of sugar hydroxyls to polar side chains explains the exquisite selectivity of VLRB.aGPA.23. The topology of the glycan-binding site of VLRB.aGPA.23 differs markedly from those of lectins or antibodies, which typically consist of long, convex grooves for accommodating the oligosaccharide. Instead, the TFα disaccharide is sandwiched between a variable loop and the concave surface of the VLR formed by the ß-strands of the leucine-rich repeat modules. Longer oligosaccharides are predicted to extend perpendicularly across the ß-strands, requiring them to bend to match the concavity of the VLR solenoid.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Proteínas de Peixes/química , Lampreias , Receptores de Antígenos de Linfócitos T/química , Animais , Antígenos Glicosídicos Associados a Tumores/genética , Antígenos Glicosídicos Associados a Tumores/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
17.
Glycobiology ; 24(6): 507-17, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24658466

RESUMO

Carbohydrates participate in almost every aspect of biology from protein sorting to modulating cell differentiation and cell-cell interactions. To date, the majority of data gathered on glycan expression has been obtained via analysis with either anti-glycan antibodies or lectins. A detailed understanding of the specificities of these reagents is critical to the analysis of carbohydrates in biological systems. Glycan microarrays are increasingly used to determine the binding specificity of glycan-binding proteins (GBPs). In this study, six different glycan microarray platforms with different modes of glycan presentation were compared using five well-known lectins; concanavalin A, Helix pomatia agglutinin, Maackia amurensis lectin I, Sambucus nigra agglutinin and wheat germ agglutinin. A new method (universal threshold) was developed to facilitate systematic comparisons across distinct array platforms. The strongest binders of each lectin were identified using the universal threshold across all platforms while identification of weaker binders was influenced by platform-specific factors including presentation of determinants, array composition and self-reported thresholding methods. This work compiles a rich dataset for comparative analysis of glycan array platforms and has important implications for the implementation of microarrays in the characterization of GBPs.


Assuntos
Proteínas de Transporte/metabolismo , Análise em Microsséries , Polissacarídeos/metabolismo , Sítios de Ligação , Carboidratos/biossíntese , Proteínas de Transporte/química , Concanavalina A/química , Concanavalina A/metabolismo , Lectinas/química , Lectinas/metabolismo , Fito-Hemaglutininas/química , Fito-Hemaglutininas/metabolismo , Polissacarídeos/química , Aglutininas do Germe de Trigo/química , Aglutininas do Germe de Trigo/metabolismo
18.
Nat Chem Biol ; 8(9): 741-2, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22907089

RESUMO

Glycosyltransferases, enzymes that catalyze glycosidic bond formation, are one of the most important but least well-characterized protein families found in nature. A new label-free, high-throughput glycan array­based strategy enables rapid profiling of tens of thousands of potential glycosyltransferase reactions.


Assuntos
Carboidratos da Dieta/administração & dosagem , Glicosiltransferases/metabolismo , Catálise , Glicosídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Chem Soc Rev ; 42(10): 4310-26, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23192235

RESUMO

In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray-based technology has been widely employed for rapid analysis of the glycan binding properties of lectins and antibodies, the quantitative measurements of glycan-protein interactions, detection of cells and pathogens, identification of disease-related anti-glycan antibodies for diagnosis, and fast assessment of substrate specificities of glycosyltransferases. This review covers the construction of carbohydrate microarrays, detection methods of carbohydrate microarrays and their applications in biological and biomedical research.


Assuntos
Carboidratos/química , Análise em Microsséries , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biomarcadores/análise , Carboidratos/imunologia , Humanos , Lectinas/química , Lectinas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA