Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Infect Dis ; 226(5): 833-842, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-32808978

RESUMO

BACKGROUND: Adoptive transfer of genetically engineered T cells expressing antigen-specific T-cell receptors (TCRs) is an appealing therapeutic approach for Epstein-Barr virus (EBV)-associated malignancies of latency type II/III that express EBV antigens (LMP1/2). Patients who are HLA-A*01:01 positive could benefit from such products, since no T cells recognizing any EBV-derived peptide in this common HLA allele have been found thus far. METHODS: HLA-A*01:01-restricted EBV-LMP2-specific T cells were isolated using peptide major histocompatibility complex (pMHC) tetramers. Functionality was assessed by production of interferon gamma (IFN-γ) and cytotoxicity when stimulated with EBV-LMP2-expressing cell lines. Functionality of primary T cells transduced with HLA-A*01:01-restricted EBV-LMP2-specific TCRs was optimized by knocking out the endogenous TCRs of primary T cells (∆TCR) using CRISPR-Cas9 technology. RESULTS: EBV-LMP2-specific T cells were successfully isolated and their TCRs were characterized. TCR gene transfer in primary T cells resulted in specific pMHC tetramer binding and reactivity against EBV-LMP2-expressing cell lines. The mean fluorescence intensity of pMHC-tetramer binding was increased 1.5-2 fold when the endogenous TCRs of CD8+ T cells was knocked out. CD8+/∆TCR T cells modified to express EBV-LMP2-specific TCRs showed IFN-γ secretion and cytotoxicity toward EBV-LMP2-expressing malignant cell lines. CONCLUSIONS: We isolated the first functional HLA-A*01:01-restricted EBV-LMP2-specific T-cell populations and TCRs, which can potentially be used in future TCR gene therapy to treat EBV-associated latency type II/III malignancies.


Assuntos
Infecções por Vírus Epstein-Barr , Antígenos HLA-A , Herpesvirus Humano 4 , Receptores de Antígenos de Linfócitos T , Proteínas da Matriz Viral , Humanos , Interferon gama , Receptores de Antígenos de Linfócitos T/genética , Proteínas da Matriz Viral/imunologia
3.
HLA ; 102(4): 436-448, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37370222

RESUMO

HLA-sensitized patients on the transplant waiting list harbor antibodies and memory B cells directed against allogeneic HLA molecules, which decreases the chance to receive a compatible donor organ. Current desensitization strategies non-specifically target circulating antibodies and B cells, warranting the development of therapies that specifically affect HLA-directed humoral immune responses. We developed Chimeric HLA Antibody Receptor (CHAR) constructs comprising the extracellular part of HLA-A2 or HLA-A3 coupled to CD28-CD3ζ domains. CHAR-transduced cells expressing reporter constructs encoding T-cell activation markers, and CHAR-transduced CD8+ T cells from healthy donors were stimulated with HLA-specific monoclonal antibody-coated microbeads, and HLA-specific B cell hybridomas. CHAR T cell activation was measured by upregulation of T cell activation markers and IFNγ secretion, whereas CHAR T cell killing of B cell hybridomas was assessed in chromium release assays and by IgG ELISpot. HLA-A2- and HLA-A3-CHAR expressing cells were specifically activated by HLA-A2- and HLA-A3-specific monoclonal antibodies, either soluble or coated on microbeads, as shown by CHAR-induced transcription factors. HLA-A2 and HLA-A3 CHAR T cells efficiently produced IFNγ with exquisite specificity and were capable of specifically lysing hybridoma cells expressing HLA-A2- or HLA-A3-specific B-cell receptors, respectively. Finally, we mutated the α3 domain of the CHAR molecules to minimize any alloreactive T-cell reactivity against CHAR T cells, while retaining CHAR activity. These data show proof of principle for CHAR T cells to serve as precision immunotherapy to specifically desensitize (highly) sensitized solid organ transplant candidates and to treat antibody-mediated rejection after solid organ transplantation.


Assuntos
Anticorpos , Linfócitos B , Dessensibilização Imunológica , Transplante de Rim , Anticorpos/genética , Anticorpos/imunologia , Aloenxertos/imunologia , Linfócitos T , Antígeno HLA-A2/metabolismo , Antígeno HLA-A3/metabolismo , Interferon gama/imunologia , Citotoxicidade Imunológica , Linfócitos B/imunologia , Dessensibilização Imunológica/métodos , Estudo de Prova de Conceito , Linhagem Celular , Doadores de Sangue , Humanos
4.
Front Immunol ; 13: 874157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720402

RESUMO

Solid organ transplantation is the treatment of choice for various end-stage diseases, but requires the continuous need for immunosuppression to prevent allograft rejection. This comes with serious side effects including increased infection rates and development of malignancies. Thus, there is a clinical need to promote transplantation tolerance to prevent organ rejection with minimal or no immunosuppressive treatment. Polyclonal regulatory T-cells (Tregs) are a potential tool to induce transplantation tolerance, but lack specificity and therefore require administration of high doses. Redirecting Tregs towards mismatched donor HLA molecules by modifying these cells with chimeric antigen receptors (CAR) would render Tregs far more effective at preventing allograft rejection. Several studies on HLA-A2 specific CAR Tregs have demonstrated that these cells are highly antigen-specific and show a superior homing capacity to HLA-A2+ allografts compared to polyclonal Tregs. HLA-A2 CAR Tregs have been shown to prolong survival of HLA-A2+ allografts in several pre-clinical humanized mouse models. Although promising, concerns about safety and stability need to be addressed. In this review the current research, obstacles of CAR Treg therapy, and its potential future in solid organ transplantation will be discussed.


Assuntos
Transplante de Órgãos , Receptores de Antígenos Quiméricos , Linfócitos T Reguladores , Animais , Antígeno HLA-A2/imunologia , Humanos , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T Reguladores/imunologia , Tolerância ao Transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA