Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7963): 102-109, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225985

RESUMO

Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.


Assuntos
Antinematódeos , Tylenchoidea , Animais , Humanos , Antinematódeos/química , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/parasitologia , Doenças das Plantas , Especificidade da Espécie , Especificidade por Substrato
2.
PLoS Pathog ; 19(3): e1011146, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862759

RESUMO

Ancylostoma caninum is an important zoonotic gastrointestinal nematode of dogs worldwide and a close relative of human hookworms. We recently reported that racing greyhound dogs in the USA are infected with A. caninum that are commonly resistant to multiple anthelmintics. Benzimidazole resistance in A. caninum in greyhounds was associated with a high frequency of the canonical F167Y(TTC>TAC) isotype-1 ß-tubulin mutation. In this work, we show that benzimidazole resistance is remarkably widespread in A. caninum from domestic dogs across the USA. First, we identified and showed the functional significance of a novel benzimidazole isotype-1 ß-tubulin resistance mutation, Q134H(CAA>CAT). Several benzimidazole resistant A. caninum isolates from greyhounds with a low frequency of the F167Y(TTC>TAC) mutation had a high frequency of a Q134H(CAA>CAT) mutation not previously reported from any eukaryotic pathogen in the field. Structural modeling predicted that the Q134 residue is directly involved in benzimidazole drug binding and that the 134H substitution would significantly reduce binding affinity. Introduction of the Q134H substitution into the C. elegans ß-tubulin gene ben-1, by CRISPR-Cas9 editing, conferred similar levels of resistance as a ben-1 null allele. Deep amplicon sequencing on A. caninum eggs from 685 hookworm positive pet dog fecal samples revealed that both mutations were widespread across the USA, with prevalences of 49.7% (overall mean frequency 54.0%) and 31.1% (overall mean frequency 16.4%) for F167Y(TTC>TAC) and Q134H(CAA>CAT), respectively. Canonical codon 198 and 200 benzimidazole resistance mutations were absent. The F167Y(TTC>TAC) mutation had a significantly higher prevalence and frequency in Western USA than in other regions, which we hypothesize is due to differences in refugia. This work has important implications for companion animal parasite control and the potential emergence of drug resistance in human hookworms.


Assuntos
Ancylostoma , Anti-Helmínticos , Animais , Cães , Ancylostoma/genética , Ancylostomatoidea , Anti-Helmínticos/farmacologia , Benzimidazóis/farmacologia , Caenorhabditis elegans , Resistência a Medicamentos/genética , Mutação , Tubulina (Proteína)/genética
3.
Proc Biol Sci ; 290(1994): 20230128, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883278

RESUMO

Echinococcus multilocularis (Em), the causative agent of human alveolar echinococcosis (AE), is present in the Holarctic region, and several genetic variants deem to have differential infectivity and pathogenicity. An unprecedented outbreak of human AE cases in Western Canada infected with a European-like strain circulating in wild hosts warranted assessment of whether this strain was derived from a recent invasion or was endemic but undetected. Using nuclear and mitochondrial markers, we investigated the genetic diversity of Em in wild coyotes and red foxes from Western Canada, compared the genetic variants identified to global isolates and assessed their spatial distribution to infer possible invasion dynamics. Genetic variants from Western Canada were closely related to the original European clade, with lesser genetic diversity than that expected for a long-established strain and spatial genetic discontinuities within the study area, supporting the hypothesis of a relatively recent invasion with various founder events.


Assuntos
Equinococose , Echinococcus multilocularis , Parasitos , Humanos , Animais , Echinococcus multilocularis/genética , Equinococose/epidemiologia , Equinococose/veterinária , Canadá , Raposas
4.
Proc Natl Acad Sci U S A ; 117(11): 5970-5976, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123093

RESUMO

Host manipulation by parasites is a fascinating evolutionary outcome, but adaptive scenarios that often accompany even iconic examples in this popular field of study are speculative. Kin selection has been invoked as a means of explaining the evolution of an altruistic-based, host-manipulating behavior caused by larvae of the lancet fluke Dicrocoelium dendriticum in ants. Specifically, cotransmission of larval clonemates from a snail first host to an ant second host is presumed to lead to a puppeteer parasite in the ant's brain that has clonemates in the ant abdomen. Clonal relatedness between the actor (brain fluke) and recipients (abdomen flukes) enables kin selection of the parasite's host-manipulating trait, which facilitates transmission of the recipients to the final host. However, the hypothesis that asexual reproduction in the snail leads to a high abundance of clonemates in the same ant is untested. Clonal relationships between the manipulator in the brain and the nonmanipulators in the abdomen are also untested. We provide empirical data on the lancet fluke's clonal diversity within its ant host. In stark contrast to other trematodes, which do not exhibit the same host-manipulating behavioral trait, the lancet fluke has a high abundance of clonemates. Moreover, our data support existing theory that indicates that the altruistic behavior can evolve even in the presence of multiple clones within the same ant host. Importantly, our analyses conclusively show clonemate cotransmission into ants, and, as such, we find support for kin selection to drive the evolution and maintenance of this iconic host manipulation.


Assuntos
Evolução Biológica , Interações Hospedeiro-Parasita/fisiologia , Parasitos/fisiologia , Animais , Formigas/parasitologia , Formigas/fisiologia , Comportamento Animal , Dicrocoelium/parasitologia , Interações Hospedeiro-Parasita/genética , Larva , Linhagem , Caramujos/parasitologia , Trematódeos/genética , Trematódeos/fisiologia
5.
Can Vet J ; 64(3): 263-267, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36874540

RESUMO

Objective: To determine how gastrointestinal nematode (GIN) infection, reflected by fecal egg counts and Ostertagia ostertagi serum antibody titers, is associated with the antibody response to bovine viral diarrhea virus type 1 (BVDV-1) vaccine antigen in fall-weaned feedlot cattle from western Canada. Animals: Cross-sectional study with 240 steer calves derived from an auction market. Procedure: At feedlot arrival, calves were given a commercial vaccine containing modified live BVDV-1. Serum neutralization antibody titers against BVDV-1 antigens were determined in individual blood samples collected pre-vaccination and 21 d after vaccination. A modified Wisconsin sugar floatation method was used to obtain individual calf GIN egg counts in fecal samples on arrival. Antibody titers against O. ostertagi were determined using an enzyme-linked immunosorbent assay in on-arrival blood samples. Results: Fecal egg counts and O. ostertagi titers were not associated with vaccine antibody-fold changes. Similarly, fecal egg counts and O. ostertagi titers were not associated with vaccine-induced seroconversion. Conclusions: The relatively low GIN burdens, reflected by the overall low fecal egg counts in these fall-weaned feedlot calves, did not have measurable adverse effects on the humoral immune response to BVDV-1 vaccine antigens. Clinical relevance: An adequate response to vaccination is important for cattle welfare and productivity. Conditions that negatively affect this response may vary regionally, such as GIN infection. Understanding this is essential. Although subclinical intestinal parasitism did not noticeably affect the antibody response in these steers, higher GIN burdens and actual immune protection from clinical disease remain to be investigated.


Effets d'une infection par des nématodes gastro-intestinaux d'origine naturelle sur la réponse en anticorps dirigés par le vaccin contre le virus de la diarrhée virale bovine chez les bovins des parcs d'engraissement de l'Ouest canadien. Objectif: Déterminer comment l'infection par les nématodes gastro-intestinaux (GIN), reflétée par le nombre d'oeufs fécaux et les titres d'anticorps sériques d'Ostertagia ostertagi, est associée à la réponse en anticorps à l'antigène du vaccin contre le virus de la diarrhée virale bovine de type 1 (BVDV-1) chez les bovins en parc d'engraissement sevrés à l'automne de l'Ouest canadien. Animaux: Étude transversale auprès de 240 veaux bouvillons issus d'un marché aux enchères. Procédure: À leur arrivée au parc d'engraissement, les veaux ont reçu un vaccin commercial contenant du BVDV-1 vivant modifié. Les titres d'anticorps sériques neutralisants contre les antigènes BVDV-1 ont été déterminés dans des échantillons de sang individuels prélevés avant la vaccination et 21 jours après la vaccination. Une méthode de Wisconsin modifiée de flottation au sucre a été utilisée pour obtenir le nombre d'oeufs GIN de chaque veau dans les échantillons fécaux à l'arrivée. Les titres d'anticorps dirigés contre O. ostertagi ont été déterminés à l'aide d'un dosage immuno-enzymatique dans des échantillons de sang à l'arrivée. Résultats: Le nombre d'oeufs fécaux et les titres d'O. ostertagi n'étaient pas associés aux modifications du titre d'anticorps vaccinaux. De même, le nombre d'oeufs fécaux et les titres d'O. ostertagi n'étaient pas associés à la séroconversion induite par le vaccin. Conclusion: Les charges relativement faibles de GIN, reflétées par le faible nombre global d'oeufs fécaux chez ces veaux d'engraissement sevrés à l'automne, n'ont pas eu d'effets indésirables mesurables sur la réponse immunitaire humorale aux antigènes du vaccin BVDV-1. Pertinence clinique: Une réponse adéquate à la vaccination est importante pour le bien-être et la productivité des bovins. Les conditions qui affectent négativement cette réponse peuvent varier selon les régions, telles que l'infection par les GIN. Comprendre cela est essentiel. Bien que le parasitisme intestinal subclinique n'ait pas sensiblement affecté la réponse en anticorps chez ces bouvillons, des charges de GIN plus élevées et une protection immunitaire réelle contre la maladie clinique restent à étudier.(Traduit par Dr Serge Messier).


Assuntos
Doenças dos Bovinos , Doenças Transmissíveis , Gastroenteropatias , Nematoides , Infecções por Nematoides , Vacinas , Bovinos , Animais , Formação de Anticorpos , Estudos Transversais , Canadá , Doenças Transmissíveis/veterinária , Infecções por Nematoides/veterinária , Gastroenteropatias/veterinária , Anticorpos Antivirais , Diarreia/veterinária
6.
BMC Genet ; 21(1): 74, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650716

RESUMO

BACKGROUND: Marker gene surveys have a wide variety of applications in species identification, population genetics, and molecular epidemiology. As these methods expand to new types of organisms and additional markers beyond 16S and 18S rRNA genes, comprehensive databases are a critical requirement for proper analysis of these data. RESULTS: Here we present an ITS2 rDNA database for marker gene surveys of both free-living and parasitic nematode populations and the software used to build the database. This is currently the most complete and up-to-date ITS2 database for nematodes and is able to reproduce previous analysis that used a smaller database. CONCLUSIONS: This database is an important resource for researchers working on nematodes and also provides a tool to create ITS2 databases for any given taxonomy.


Assuntos
DNA Espaçador Ribossômico/genética , Bases de Dados Genéticas , Nematoides/genética , Animais , Biologia Computacional , Marcadores Genéticos , Software
7.
Parasitology ; 147(8): 897-906, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32138794

RESUMO

As genomic research continues to improve our understanding of the genetics of anthelmintic drug resistance, the revolution in DNA sequencing technologies will provide increasing opportunities for large-scale surveillance for the emergence of drug resistance. In most countries, parasite control in cattle and bison has mainly depended on pour-on macrocyclic lactone formulations resulting in widespread ivermectin resistance. Consequently, there is an increased interest in using benzimidazole drugs which have been used comparatively little in cattle and bison in recent years. This situation, together with our understanding of benzimidazole resistance genetics, provides a practical opportunity to use deep-amplicon sequencing to assess the risk of drug resistance emergence. In this paper, we use deep-amplicon sequencing to scan for those mutations in the isotype-1 ß-tubulin gene previously associated with benzimidazole resistance in many trichostrongylid nematode species. We found that several of these mutations occur at low frequency in many cattle and bison parasite populations in North America, suggesting increased use of benzimidazole drugs in cattle has the potential to result in widespread emergence of resistance in multiple parasite species. This work illustrates a post-genomic approach to large-scale surveillance of early emergence of anthelmintic resistance in the field.


Assuntos
Benzimidazóis/uso terapêutico , Resistência a Medicamentos/genética , Helmintíase Animal/tratamento farmacológico , Nematoides/genética , Ruminantes/parasitologia , Animais , Anti-Helmínticos/uso terapêutico , Bison , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Trato Gastrointestinal/parasitologia , Genoma Helmíntico , Genômica , Haemonchus/efeitos dos fármacos , Haemonchus/genética , Helmintíase Animal/prevenção & controle , Metagenômica , Mutação , Nematoides/efeitos dos fármacos , América do Norte , Ostertagia/efeitos dos fármacos , Ostertagia/genética , Filogenia , Trichostrongyloidea/efeitos dos fármacos , Trichostrongyloidea/genética , Tubulina (Proteína)/genética , Estados Unidos
8.
BMC Genomics ; 20(1): 218, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30876405

RESUMO

BACKGROUND: Infections with helminths cause an enormous disease burden in billions of animals and plants worldwide. Large scale use of anthelmintics has driven the evolution of resistance in a number of species that infect livestock and companion animals, and there are growing concerns regarding the reduced efficacy in some human-infective helminths. Understanding the mechanisms by which resistance evolves is the focus of increasing interest; robust genetic analysis of helminths is challenging, and although many candidate genes have been proposed, the genetic basis of resistance remains poorly resolved. RESULTS: Here, we present a genome-wide analysis of two genetic crosses between ivermectin resistant and sensitive isolates of the parasitic nematode Haemonchus contortus, an economically important gastrointestinal parasite of small ruminants and a model for anthelmintic research. Whole genome sequencing of parental populations, and key stages throughout the crosses, identified extensive genomic diversity that differentiates populations, but after backcrossing and selection, a single genomic quantitative trait locus (QTL) localised on chromosome V was revealed to be associated with ivermectin resistance. This QTL was common between the two geographically and genetically divergent resistant populations and did not include any leading candidate genes, suggestive of a previously uncharacterised mechanism and/or driver of resistance. Despite limited resolution due to low recombination in this region, population genetic analyses and novel evolutionary models supported strong selection at this QTL, driven by at least partial dominance of the resistant allele, and that large resistance-associated haplotype blocks were enriched in response to selection. CONCLUSIONS: We have described the genetic architecture and mode of ivermectin selection, revealing a major genomic locus associated with ivermectin resistance, the most conclusive evidence to date in any parasitic nematode. This study highlights a novel genome-wide approach to the analysis of a genetic cross in non-model organisms with extreme genetic diversity, and the importance of a high-quality reference genome in interpreting the signals of selection so identified.


Assuntos
Resistência a Medicamentos , Evolução Molecular , Haemonchus/efeitos dos fármacos , Haemonchus/genética , Ivermectina/farmacologia , Metagenômica , Locos de Características Quantitativas , Animais , DNA de Helmintos , Variação Genética , Inseticidas/farmacologia
10.
Parasitology ; 143(8): 983-97, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27046508

RESUMO

In wild and domestic animals, gastrointestinal parasites can have significant impacts on host development, condition, health, reproduction and longevity. Improving our understanding of the causes and consequences of individual-level variation in parasite load is therefore of prime interest. Here we investigated the relationship between strongyle fecal egg count (FEC) and body condition in a unique, naturalized population of horses that has never been exposed to anthelmintic drugs (Sable Island, Nova Scotia, Canada). We first quantified variation in FEC and condition for 447 individuals according to intrinsic (sex, age, reproductive status, social status) and extrinsic (group size, location, local density) variables. We then quantified the repeatability of measurements obtained over a field season and tested for covariance between FEC and condition. FECs were high relative to other horse populations (mean eggs per gram ± SD = 1543·28 ± 209·94). FECs generally decreased with age, were higher in lactating vs non-lactating females, and unexpectedly lower in males in some part of the island. FECs and condition were both spatially structured, with patterns depending on age, sex and reproductive status. FECs and condition were both repeatable. Most notably, FECs and condition were negatively correlated, especially in adult females.


Assuntos
Doenças dos Cavalos/parasitologia , Cavalos/parasitologia , Interações Hospedeiro-Parasita , Infecções Equinas por Strongyloidea/parasitologia , Strongylus/isolamento & purificação , Fatores Etários , Animais , Canadá , Fezes/parasitologia , Feminino , Masculino , Contagem de Ovos de Parasitas/veterinária , Carga Parasitária , Estações do Ano , Fatores Sexuais , Strongylus/fisiologia
11.
Bioinformatics ; 30(22): 3266-7, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25115706

RESUMO

MOTIVATION: Gene models from draft genome assemblies of metazoan species are often incorrect, missing exons or entire genes, particularly for large gene families. Consequently, labour-intensive manual curation is often necessary. We present Figmop (Finding Genes using Motif Patterns) to help with the manual curation of gene families in draft genome assemblies. The program uses a pattern of short sequence motifs to identify putative genes directly from the genome sequence. Using a large gene family as a test case, Figmop was found to be more sensitive and specific than a BLAST-based approach. The visualization used allows the validation of potential genes to be carried out quickly and easily, saving hours if not days from an analysis. AVAILABILITY AND IMPLEMENTATION: Source code of Figmop is freely available for download at https://github.com/dave-the-scientist, implemented in C and Python and is supported on Linux, Unix and MacOSX. CONTACT: curran.dave.m@gmail.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genes , Genômica/métodos , Modelos Genéticos , Software , Sistema Enzimático do Citocromo P-450/genética , Cadeias de Markov , Família Multigênica
13.
Mol Ecol Resour ; 24(5): e13965, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733216

RESUMO

The ITS-2-rRNA has been particularly useful for nematode metabarcoding but does not resolve all phylogenetic relationships, and reference sequences are not available for many nematode species. This is a particular issue when metabarcoding complex communities such as wildlife parasites or terrestrial and aquatic free-living nematode communities. We have used markerDB to produce four databases of distinct regions of the rRNA cistron: the 18S rRNA gene, the 28S rRNA gene, the ITS-1 intergenic spacer and the region spanning ITS-1_5.8S_ITS-2. These databases comprise 2645, 254, 13,461 and 10,107 unique full-length sequences representing 1391, 204, 1837 and 1322 nematode species, respectively. The comparative analysis illustrates the complementary value but also reveals a better representation of Clade III, IV and V than Clade I and Clade II nematodes in each case. Although the ITS-1 database includes the largest number of unique full-length sequences, the 18S rRNA database provides the widest taxonomic coverage. We also developed PrimerTC, a tool to assess primer sequence conservation across any reference sequence database, and have applied it to evaluate a large number of previously published rRNA cistron primers. We identified sets of primers that currently provide the broadest taxonomic coverage for each rRNA marker across the nematode phylum. These new resources will facilitate more comprehensive metabarcoding of nematode communities using either short-read or long-read sequencing platforms. Further, PrimerTC is available as a simple WebApp to guide or assess PCR primer design for any genetic marker and/or taxonomic group beyond the nematode phylum.


Assuntos
Código de Barras de DNA Taxonômico , Nematoides , Animais , Nematoides/genética , Nematoides/classificação , Código de Barras de DNA Taxonômico/métodos , RNA Ribossômico 18S/genética , DNA Espaçador Ribossômico/genética , RNA Ribossômico 28S/genética , Primers do DNA/genética , DNA de Helmintos/genética , Filogenia , Metagenômica/métodos
14.
Trends Parasitol ; 40(6): 511-526, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760257

RESUMO

Helminth infections in grazing ruminants are a major issue for livestock farming globally, but are unavoidable in outdoor grazing systems and must be effectively managed to avoid deleterious effects to animal health, and productivity. Next-generation sequencing (NGS) technologies are transforming our understanding of the genetic basis of anthelmintic resistance (AR) and epidemiological studies of ruminant gastrointestinal parasites. They also have the potential to not only help develop and validate molecular diagnostic tests but to be directly used in routine diagnostics integrating species-specific identification and AR into a single test. Here, we review how these developments have opened the pathway for the development of multi-AR and multispecies identification in a single test, with widespread implications for sustainable livestock farming for the future.


Assuntos
Helmintíase Animal , Sequenciamento de Nucleotídeos em Larga Escala , Ruminantes , Animais , Ruminantes/parasitologia , Helmintíase Animal/diagnóstico , Helmintíase Animal/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Helmintos/genética , Resistência a Medicamentos/genética
15.
Int J Parasitol ; 54(11): 535-549, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38806068

RESUMO

Xenobiotic biotransformation is an important modulator of anthelmintic drug potency and a potential mechanism of anthelmintic resistance. Both the free-living nematode Caenorhabditis elegans and the ruminant parasite Haemonchus contortus biotransform benzimidazole drugs by glucose conjugation, likely catalysed by UDP-glycosyltransferase (UGT) enzymes. To identify C. elegans genes involved in benzimidazole drug detoxification, we first used a comparative phylogenetic analysis of UGTs from humans, C. elegans and H. contortus, combined with available RNAseq datasets to identify which of the 63 C. elegans ugt genes are most likely to be involved in benzimidazole drug biotransformation. RNA interference knockdown of 15 prioritized C. elegans genes identified those that sensitized animals to the benzimidazole derivative albendazole (ABZ). Genetic mutations subsequently revealed that loss of ugt-9 and ugt-11 had the strongest effects. The "ugt-9 cluster" includes these genes, together with six other closely related ugts. A CRISPR-Cas-9 deletion that removed seven of the eight ugt-9 cluster genes had greater ABZ sensitivity than the single largest-effect mutation. Furthermore, a double mutant of ugt-22 (which is not a member of the ugt-9 cluster) with the ugt-9 cluster deletion further increased ABZ sensitivity. This additivity of mutant phenotypes suggest that ugt genes act in parallel, which could have several, not mutually exclusive, explanations. ugt mutations have different effects with different benzimidazole derivatives, suggesting that enzymes with different specificities could together more efficiently detoxify drugs. Expression patterns of ugt-9, ugt-11 and ugt-22 gfp reporters differ and so likely act in different tissues which may, at least in part, explain their additive effects on drug potency. Overexpression of ugt-9 alone was sufficient to confer partial ABZ resistance, indicating increasing total UGT activity protects animals. In summary, our results suggest that the multiple UGT enzymes have overlapping but not completely redundant functions in benzimidazole drug detoxification and may represent "druggable" targets to improve benzimidazole drug potency.


Assuntos
Anti-Helmínticos , Benzimidazóis , Caenorhabditis elegans , Glicosiltransferases , Haemonchus , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/efeitos dos fármacos , Benzimidazóis/farmacologia , Benzimidazóis/metabolismo , Anti-Helmínticos/farmacologia , Anti-Helmínticos/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Haemonchus/genética , Haemonchus/efeitos dos fármacos , Haemonchus/enzimologia , Resistência a Medicamentos/genética , Filogenia , Humanos , Mutação , Interferência de RNA , Albendazol/farmacologia
16.
Parasitology ; 140(12): 1506-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23998513

RESUMO

Anthelmintic resistance is a major problem for the control livestock parasites and a potential threat to the sustainability of community-wide treatment programmes being used to control human parasites in the developing world. Anthelmintic resistance is essentially a complex quantitative trait in which multiple mutations contribute to the resistance phenotype in an additive manner. Consequently, a combination of forward genetic and genomic approaches are needed to identify the causal mutations and quantify their contribution to the resistance phenotype. Therefore, there is a need to develop genetic and genomic approaches for key parasite species identified as relevant models. Haemonchus contortus, a gastro-intestinal parasite of sheep, has shown a remarkable propensity to develop resistance to all the drugs used in its control. Partly because of this, and partly because of its experimental amenability, research on this parasite has contributed more than any other to our understanding of anthelmintic resistance. H. contortus offers a variety of advantages as an experimental system including the ability to undertake genetic crosses; a prerequisite for genetic mapping. This review will discuss the current progress on developing H. contortus as a model system in which to study anthelmintic resistance.


Assuntos
Anti-Helmínticos/farmacologia , Resistência a Medicamentos/genética , Haemonchus/genética , Locos de Características Quantitativas/genética , Animais , Engenharia Genética , Genômica , Haemonchus/efeitos dos fármacos , Humanos , Endogamia , Modelos Biológicos , Ovinos
17.
Vet Parasitol ; 318: 109936, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37121092

RESUMO

The faecal egg count reduction test (FECRT) remains the method of choice for establishing the efficacy of anthelmintic compounds in the field, including the diagnosis of anthelmintic resistance. We present a guideline for improving the standardization and performance of the FECRT that has four sections. In the first section, we address the major issues relevant to experimental design, choice of faecal egg count (FEC) method, statistical analysis, and interpretation of the FECRT results. In the second section, we make a series of general recommendations that are applicable across all animals addressed in this guideline. In the third section, we provide separate guidance details for cattle, small ruminants (sheep and goats), horses and pigs to address the issues that are specific to the different animal types. Finally, we provide overviews of the specific details required to conduct an FECRT for each of the different host species. To address the issues of statistical power vs. practicality, we also provide two separate options for each animal species; (i) a version designed to detect small changes in efficacy that is intended for use in scientific studies, and (ii) a less resource-intensive version intended for routine use by veterinarians and livestock owners to detect larger changes in efficacy. Compared to the previous FECRT recommendations, four important differences are noted. First, it is now generally recommended to perform the FECRT based on pre- and post-treatment FEC of the same animals (paired study design), rather than on post-treatment FEC of both treated and untreated (control) animals (unpaired study design). Second, instead of requiring a minimum mean FEC (expressed in eggs per gram (EPG)) of the group to be tested, the new requirement is for a minimum total number of eggs to be counted under the microscope (cumulative number of eggs counted before the application of a conversion factor). Third, we provide flexibility in the required size of the treatment group by presenting three separate options that depend on the (expected) number of eggs counted. Finally, these guidelines address all major livestock species, and the thresholds for defining reduced efficacy are adapted and aligned to host species, anthelmintic drug and parasite species. In conclusion, these new guidelines provide improved methodology and standardization of the FECRT for all major livestock species.


Assuntos
Anti-Helmínticos , Óvulo , Animais , Cavalos , Bovinos , Ovinos , Suínos , Contagem de Ovos de Parasitas/veterinária , Contagem de Ovos de Parasitas/métodos , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Fezes/parasitologia , Cabras , Resistência a Medicamentos
18.
Artigo em Inglês | MEDLINE | ID: mdl-37119733

RESUMO

A large-scale Fecal Egg Count Reduction Test (FECRT) was integrated with ITS-2 rDNA nemabiome metabarcoding to investigate anthelmintic resistance in gastrointestinal nematode (GIN) parasites in western Canadian beef cattle. The study was designed to detect anthelmintic resistance with the low fecal egg counts that typically occur in cattle in northern temperate regions. Two hundred and thirty-four auction market-derived, fall-weaned steer calves coming off pasture were randomized into three groups in feedlot pens: an untreated control group, an injectable ivermectin treatment group, and an injectable ivermectin/oral fenbendazole combination treatment group. Each group was divided into six replicate pens with 13 calves per pen. Individual fecal samples were taken pre-treatment, day 14 post-treatment, and at monthly intervals for six months for strongyle egg counting and metabarcoding. Ivermectin treatment resulted in an 82.4% mean strongyle-type fecal egg count reduction (95% CI 67.8-90.4) at 14 days post-treatment, while the combination treatment was 100% effective, confirming the existence of ivermectin-resistant GIN. Nemabiome metabarcoding of third-stage larvae from coprocultures revealed an increase in the relative abundance of Cooperia oncophora, Cooperia punctata, and Haemonchus placei at 14 days post-ivermectin treatment indicating ivermectin resistance in adult worms. In contrast, Ostertagia ostertagi third-stage larvae were almost completely absent from day 14 coprocultures, indicating that adult worms of this species were not ivermectin resistant. However, there was a recrudescence of O. ostertagi third stage larvae in coprocultures at three to six months post-ivermectin treatment, which indicated ivermectin resistance in hypobiotic larvae. The calves were recruited from the auction market and, therefore, derived from multiple sources in western Canada, suggesting that ivermectin-resistant parasites, including hypobiotic O. ostertagi larvae, are likely widespread in western Canadian beef herds. This work demonstrates the value of integrating ITS-2 rDNA metabarcoding with the FECRT to enhance anthelmintic resistance detection and provide GIN species- and stage-specific information.


Assuntos
Anti-Helmínticos , Doenças dos Bovinos , Nematoides , Infecções por Nematoides , Trichostrongyloidea , Animais , Bovinos , Anti-Helmínticos/uso terapêutico , Canadá , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/parasitologia , DNA Ribossômico , Fezes/parasitologia , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Nematoides/genética , Infecções por Nematoides/tratamento farmacológico , Ostertagia/genética , Contagem de Ovos de Parasitas/veterinária , Trichostrongyloidea/genética
19.
BMC Genomics ; 13: 4, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22216965

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play key roles in regulating post-transcriptional gene expression and are essential for development in the free-living nematode Caenorhabditis elegans and in higher organisms. Whether microRNAs are involved in regulating developmental programs of parasitic nematodes is currently unknown. Here we describe the the miRNA repertoire of two important parasitic nematodes as an essential first step in addressing this question. RESULTS: The small RNAs from larval and adult stages of two parasitic species, Brugia pahangi and Haemonchus contortus, were identified using deep-sequencing and bioinformatic approaches. Comparative analysis to known miRNA sequences reveals that the majority of these miRNAs are novel. Some novel miRNAs are abundantly expressed and display developmental regulation, suggesting important functional roles. Despite the lack of conservation in the miRNA repertoire, genomic positioning of certain miRNAs within or close to specific coding genes is remarkably conserved across diverse species, indicating selection for these associations. Endogenous small-interfering RNAs and Piwi-interacting (pi)RNAs, which regulate gene and transposon expression, were also identified. piRNAs are expressed in adult stage H. contortus, supporting a conserved role in germline maintenance in some parasitic nematodes. CONCLUSIONS: This in-depth comparative analysis of nematode miRNAs reveals the high level of divergence across species and identifies novel sequences potentially involved in development. Expression of novel miRNAs may reflect adaptations to different environments and lifestyles. Our findings provide a detailed foundation for further study of the evolution and function of miRNAs within nematodes and for identifying potential targets for intervention.


Assuntos
Brugia pahangi/genética , Variação Genética , Genoma Helmíntico/genética , Haemonchus/genética , MicroRNAs/genética , Animais , Brugia pahangi/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Análise por Conglomerados , Biologia Computacional , Genes de Helmintos , Haemonchus/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , MicroRNAs/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Análise de Sequência de RNA
20.
Vet Parasitol ; 310: 109777, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985170

RESUMO

Gastrointestinal nematodes (GIN) are amongst the most important pathogens of grazing ruminants worldwide, resulting in negative impacts on cattle health and production. The dynamics of infection are driven in large part by the influence of climate and weather on free-living stages on pasture, and computer models have been developed to predict infective larval abundance and guide management strategies. Significant uncertainties around key model parameters limits effective application of these models to GIN in cattle, however, and these parameters are difficult to estimate in natural populations of mixed GIN species. In this paper, recent advances in molecular biology, specifically ITS-2 rDNA 'nemabiome' metabarcoding, are synthesised with a modern population dynamic model, GLOWORM-FL, to overcome this limitation. Experiments under controlled conditions were used to estimate rainfall constraints on migration of infective L3 larvae out of faeces, and their survival in faeces and soil across a temperature gradient, with nemabiome metabarcoding data permitting species-specific estimates for Ostertagia ostertagi and Cooperia oncophora in mixed natural populations. Results showed that L3 of both species survived well in faeces and soil between 0 and 30 °C, and required at least 5 mm of rainfall daily to migrate out of faeces, with the proportion migrating increasing with the amount of rainfall. These estimates were applied within the model using weather and grazing data and use to predict patterns of larval availability on pasture on three commercial beef farms in western Canada. The model performed well overall in predicting the observed seasonal patterns but some discrepancies were evident which should guide further iterative improvements in model development and field methods. The model was also applied to illustrate its use in exploring differences in predicted seasonal transmission patterns in different regions. Such predictive modelling can help inform evidence-based parasite control strategies which are increasingly needed due climate change and drug resistance. The work presented here also illustrates the added value of combining molecular biology and population dynamics to advance predictive understanding of parasite infections.


Assuntos
Doenças dos Bovinos , Nematoides , Infecções por Nematoides , Trichostrongyloidea , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Fezes/parasitologia , Larva , Infecções por Nematoides/veterinária , Ostertagia/genética , Dinâmica Populacional , Solo , Trichostrongyloidea/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA