Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Curr Top Microbiol Immunol ; 430: 131-160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-30888548

RESUMO

Overcoming the challenges of understanding and treating cancer requires reliable patient-derived models of cancer (PDMCs). For decades, cancer research and therapeutic development relied primarily on cancer cell lines because of their prevalence, reproducibility, and simplicity to maintain. However, findings from research conducted in cell lines are rarely recapitulated in vivo and seldom directly translatable to patients. The tumor microenvironment (TME), tumor-stromal interactions, and associations with host immune cells produce profound changes in tumor phenotype and complexity not captured in traditional monolayer cell culture. In this chapter, we present various cancer explant models and discuss their applicability based on specific research aims. We discuss the appropriateness of these models for basic science questions, drug screening/development, and for personalized, precision medicine. We also consider logistical factors such as resource cost, technical difficulty, and accessibility. We finish this chapter with a practical guide intended to help the reader select the cancer explant model system(s) that best address their research aims.


Assuntos
Neoplasias , Microambiente Tumoral , Técnicas de Cultura de Células , Humanos , Neoplasias/terapia , Medicina de Precisão , Reprodutibilidade dos Testes
2.
World Neurosurg ; 122: e1592-e1598, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30481622

RESUMO

OBJECTIVE: The engineered herpes simplex virus-1 G207, is a promising therapeutic option for central nervous system tumors. The first-ever pediatric phase 1 trial of continuous-infusion delivery of G207 via intratumoral catheters for recurrent or progressive malignant brain tumors is ongoing. In this article, we describe surgical techniques for the accurate placement of catheters in multiple supratentorial locations and perioperative complications associated with such procedures. METHODS: A prospective study of G207 in children with recurrent malignant supratentorial tumors is ongoing. Preoperative stereotactic protocol magnetic resonance imaging was performed, and catheter trajectories planned using StealthStation planning software. Children underwent placement of 3-4 silastic catheters using a small incision burr hole and the Vertek system. Patients had a preinfusion computed tomography scan to confirm correct placement of catheters. RESULTS: Six children underwent implantation of 3-4 catheters. Locations of catheter placement included frontal, temporal, parietal, and occipital lobes, and the insula and thalamus. There were no clinically significant perioperative complications. Postoperative computed tomography scans coupled with preoperative MRI scans demonstrated accurate placement of 21 of 22 catheters, with 1 misplaced catheter pulled back to an optimal location at the bedside. One patient had hemorrhage along the catheter tract that was clinically asymptomatic. Another patient had cerebrospinal fluid leak from a biopsy incision 9 days after surgery that was oversewn without complication. CONCLUSIONS: The placement of multiple intratumoral catheters in pediatric patients with supratentorial tumors via frameless stereotactic techniques is feasible and safe. Intratumoral catheters provide a potentially effective route for the delivery of G207 and may be employed in other trials utilizing oncolytic virotherapy for brain tumors.


Assuntos
Cateteres de Demora , Recidiva Local de Neoplasia/terapia , Terapia Viral Oncolítica/métodos , Técnicas Estereotáxicas , Neoplasias Supratentoriais/terapia , Adolescente , Criança , Feminino , Herpesvirus Humano 1/genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Recidiva Local de Neoplasia/diagnóstico por imagem , Vírus Oncolíticos , Complicações Pós-Operatórias , Neoplasias Supratentoriais/diagnóstico por imagem
3.
Semin Radiat Oncol ; 25(4): 273-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26384275

RESUMO

The cancer literature is filled with promising preclinical studies demonstrating impressive efficacy for new therapeutics, yet translation of these approaches into clinical successes has been rare, indicating that current methods used to predict efficacy are suboptimal. The most likely reason for the limitation of these studies is the disconnect between preclinical models and cancers treated in the clinic. Specifically, most preclinical models are poor representations of human disease. Immortalized cancer cell lines that dominate the cancer literature may be, in a sense, "paper tigers" that have been selected by decades of culture to be artificially driven by highly targetable proteins. Thus, although effective in treating these cell lines either in vitro or as artificial tumors transplanted from culture into experimental animals as xenografts, the identified therapies would likely underperform in a clinical setting. This inherent limitation applies not only to drug testing but also to experiments with radiation therapy. Indeed, traditional radiobiology methods rely on monolayer culture systems, with emphasis on colony formation and DNA damage assessment that may have limited clinical translation. As such, there has been keen interest in developing tumor explant systems in which patient tumors are directly transplanted into and solely maintained in vivo, using immunocompromised mice. These so-called patient-derived xenografts (PDXs) represent a robust model system that has been garnering support in academia and industry as a superior preclinical approach to drug testing. Likewise, PDX models have the potential to improve radiation research. In this review, we describe how PDX models are currently being used for both drug and radiation testing and how they can be incorporated into a translational research program.


Assuntos
Xenoenxertos , Neoplasias Experimentais/radioterapia , Projetos de Pesquisa , Animais , Modelos Animais de Doenças , Humanos , Camundongos
4.
Artigo em Inglês | MEDLINE | ID: mdl-26436134

RESUMO

Oncolytic engineered herpes simplex viruses (HSVs) possess many biologic and functional attributes that support their use in clinical trials in children with solid tumors. Tumor cells, in an effort to escape regulatory mechanisms that would impair their growth and progression, have removed many mechanisms that would have protected them from virus infection and eventual virus-mediated destruction. Viruses engineered to exploit this weakness, like mutant HSV, can be safely employed as tumor cell killers, since normal cells retain these antiviral strategies. Many preclinical studies and early phase trials in adults demonstrated that oncolytic HSV can be safely used and are highly effective in killing tumor cells that comprise pediatric malignancies, without generating the toxic side effects of nondiscriminatory chemotherapy or radiation therapy. A variety of engineered viruses have been developed and tested in numerous preclinical models of pediatric cancers and initial trials in patients are underway. In Part II of this review series, we examine the preclinical evidence to support the further advancement of oncolytic HSV in the pediatric population. We discuss clinical advances made to date in this emerging era of oncolytic virotherapy.

5.
Artigo em Inglês | MEDLINE | ID: mdl-26436135

RESUMO

Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV) to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors.

6.
Oncotarget ; 8(21): 34020-34021, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28487503
7.
Transl Oncol ; 5(3): 200-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22741039

RESUMO

Hypoxia plays a critical role in the tumor microenvironment of high-grade gliomas by promoting the glioma stem cell (GSC)-like phenotype, which displays resistance to standard therapies. We tested three glioblastoma multiforme xenograft lines (xenolines) against γ(1)34.5-deleted recombinant oncolytic herpes simplex virus (oHSV) C101 under 1% (hypoxia) and 20.8% (normoxia) oxygen tension for effects on oHSV infectivity, replication, and cytotoxicity in all tumor cells and CD133(+) GSCs. Expression levels of CD133, a putative GSC marker, and CD111 (nectin-1), an adhesion molecule that is the most efficient method for HSV entry, increased significantly under hypoxia in all three xenolines. Despite increased CD111 expression under hypoxic conditions, oHSV infectivity, cytotoxicity and viral recovery were not improved or were diminished in all three xenolines under hypoxia. In contrast, wild-type HSV-1 equally infected xenoline cells in normoxia and hypoxia, suggesting that the 34.5 mutation plays a role in the decreased C101 infectivity in hypoxia. Importantly, CD133(+) cells were not more resistant to oHSV than CD133(-) tumor cells regardless of oxygen tension. Furthermore, CD133 expression decreased as viral dose increased in two of the xenolines suggesting that up-regulation of CD133 in hypoxia was not the cause of reduced viral efficacy. Our findings that oHSV infectivity and cytotoxicity were diminished under hypoxia in several GBM xenolines likely have important implications for clinical applications of oHSV therapies, especially considering the vital role of hypoxia in the microenvironment of GBM tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA