Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Clin Infect Dis ; 76(3): e1328-e1334, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35959938

RESUMO

BACKGROUND: Influenza circulated at historically low levels during 2020/2021 due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic travel restrictions. In Australia, international arrivals were required to undergo a 14-day hotel quarantine to limit new introduction of SARS-CoV-2. METHODS: We usedtesting data for travelers arriving on repatriation flights to Darwin, Australia, from 3 January 2021 to 11 October 2021 to identify importations of influenza virus into Australia. We used this information to estimate the risk of a case exiting quarantine while still infectious. Influenza-positive samples were sequenced, and cases were followed up to identify transmission clusters. Data on the number of cases and total passengers were used to infer the risk of influenza cases exiting quarantine while infectious. RESULTS: Despite very low circulation of influenza globally, 42 cases were identified among 15 026 returned travelers, of which 30 were A(H3N2), 2 were A(H1N1)pdm09, and 10 were B/Victoria. Virus sequencing data identified potential in-flight transmission, as well as independent infections prior to travel. Under the quarantine strategy in place at the time, the probability that these cases could initiate influenza outbreaks in Australia neared 0. However, this probability rose as quarantine requirements relaxed. CONCLUSIONS: Detection of influenza virus infections in repatriated travelers provided a source of influenza viruses otherwise unavailable and enabled development of the A(H3N2) vaccine seed viruses included in the 2022 Southern Hemisphere influenza vaccine. Failure to test quarantined returned travelers for influenza represents a missed opportunity for enhanced surveillance to better inform public health preparedness.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Quarentena , Vírus da Influenza A Subtipo H3N2 , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vitória
2.
PLoS Pathog ; 14(4): e1007029, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29709018

RESUMO

Positive-sense RNA virus intracellular replication is intimately associated with membrane platforms that are derived from host organelles and comprised of distinct lipid composition. For flaviviruses, such as West Nile virus strain Kunjin virus (WNVKUN) we have observed that these membrane platforms are derived from the endoplasmic reticulum and are rich in (at least) cholesterol. To extend these studies and identify the cellular lipids critical for WNVKUN replication we utilized a whole cell lipidomics approach and revealed an elevation in phospholipase A2 (PLA2) activity to produce lyso-phosphatidylcholine (lyso-PChol). We observed that the PLA2 enzyme family is activated in WNVKUN-infected cells and the generated lyso-PChol lipid moieties are sequestered to the subcellular sites of viral replication. The requirement for lyso-PChol was confirmed using chemical inhibition of PLA2, where WNVKUN replication and production of infectious virus was duly affected in the presence of the inhibitors. Importantly, we could rescue chemical-induced inhibition with the exogenous addition of lyso-PChol species. Additionally, electron microscopy results indicate that lyso-PChol appears to contribute to the formation of the WNVKUN membranous replication complex (RC); particularly affecting the morphology and membrane curvature of vesicles comprising the RC. These results extend our current understanding of how flaviviruses manipulate lipid homeostasis to favour their own intracellular replication.


Assuntos
Retículo Endoplasmático/virologia , Rim/enzimologia , Lipídeos de Membrana/metabolismo , Fosfolipases A2/metabolismo , Replicação Viral , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/patogenicidade , Animais , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Retículo Endoplasmático/enzimologia , Rim/virologia , Células Vero , Febre do Nilo Ocidental/enzimologia
3.
J Virol ; 90(17): 7848-63, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27334579

RESUMO

UNLABELLED: It is well established that glycosaminoglycans (GAGs) function as attachment factors for human metapneumovirus (HMPV), concentrating virions at the cell surface to promote interaction with other receptors for virus entry and infection. There is increasing evidence to suggest that multiple receptors may exhibit the capacity to promote infectious entry of HMPV into host cells; however, definitive identification of specific transmembrane receptors for HMPV attachment and entry is complicated by the widespread expression of cell surface GAGs. pgsA745 Chinese hamster ovary (CHO) cells are deficient in the expression of cell surface GAGs and resistant to HMPV infection. Here, we demonstrate that the expression of the Ca(2+)-dependent C-type lectin receptor (CLR) DC-SIGN (CD209L) or L-SIGN (CD209L) rendered pgsA745 cells permissive to HMPV infection. Unlike infection of parental CHO cells, HMPV infection of pgsA745 cells expressing DC-SIGN or L-SIGN was dynamin dependent and inhibited by mannan but not by pretreatment with bacterial heparinase. Parental CHO cells expressing DC-SIGN/L-SIGN also showed enhanced susceptibility to dynamin-dependent HMPV infection, confirming that CLRs can promote HMPV infection in the presence or absence of GAGs. Comparison of pgsA745 cells expressing wild-type and endocytosis-defective mutants of DC-SIGN/L-SIGN indicated that the endocytic function of CLRs was not essential but could contribute to HMPV infection of GAG-deficient cells. Together, these studies confirm a role for CLRs as attachment factors and entry receptors for HMPV infection. Moreover, they define an experimental system that can be exploited to identify transmembrane receptors and entry pathways where permissivity to HMPV infection can be rescued following the expression of a single cell surface receptor. IMPORTANCE: On the surface of CHO cells, glycosaminoglycans (GAGs) function as the major attachment factor for human metapneumoviruses (HMPV), promoting dynamin-independent infection. Consistent with this, GAG-deficient pgaA745 CHO cells are resistant to HMPV. However, expression of DC-SIGN or L-SIGN rendered pgsA745 cells permissive to dynamin-dependent infection by HMPV, although the endocytic function of DC-SIGN/L-SIGN was not essential for, but could contribute to, enhanced infection. These studies provide direct evidence implicating DC-SIGN/L-SIGN as an alternate attachment factor for HMPV attachment, promoting dynamin-dependent infection via other unknown receptors in the absence of GAGs. Moreover, we describe a unique experimental system for the assessment of putative attachment and entry receptors for HMPV.


Assuntos
Moléculas de Adesão Celular/metabolismo , Glicosaminoglicanos/metabolismo , Lectinas Tipo C/metabolismo , Metapneumovirus/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Ligação Viral , Animais , Células CHO , Cricetinae , Cricetulus , Humanos
4.
J Virol ; 89(24): 12319-29, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423941

RESUMO

UNLABELLED: Airway epithelial cells are susceptible to infection with seasonal influenza A viruses (IAV), resulting in productive virus replication and release. Macrophages (MΦ) are also permissive to IAV infection; however, virus replication is abortive. Currently, it is unclear how productive infection of MΦ is impaired or the extent to which seasonal IAV replicate in MΦ. Herein, we compared mouse MΦ and epithelial cells for their ability to support genomic replication and transcription, synthesis of viral proteins, assembly of virions, and release of infectious progeny following exposure to genetically defined IAV. We confirm that seasonal IAV differ in their ability to utilize cell surface receptors for infectious entry and that this represents one level of virus restriction. Following virus entry, we demonstrate synthesis of all eight segments of genomic viral RNA (vRNA) and mRNA, as well as seven distinct IAV proteins, in IAV-infected mouse MΦ. Although newly synthesized hemagglutinin (HA) and neuraminidase (NA) glycoproteins are incorporated into the plasma membrane and expressed at the cell surface, electron microscopy confirmed that virus assembly was defective in IAV-infected MΦ, defining a second level of restriction late in the virus life cycle. IMPORTANCE: Seasonal influenza A viruses (IAV) and highly pathogenic avian influenza viruses (HPAI) infect macrophages, but only HPAI replicate productively in these cells. Herein, we demonstrate that impaired virus uptake into macrophages represents one level of restriction limiting infection by seasonal IAV. Following uptake, seasonal IAV do not complete productive replication in macrophages, representing a second level of restriction. Using murine macrophages, we demonstrate that productive infection is blocked late in the virus life cycle, such that virus assembly is defective and newly synthesized virions are not released. These studies represent an important step toward identifying host-encoded factors that block replication of seasonal IAV, but not HPAI, in macrophages.


Assuntos
Vírus da Influenza A/fisiologia , Macrófagos/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Montagem de Vírus/fisiologia , Internalização do Vírus , Replicação Viral/fisiologia , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Macrófagos/virologia , Células Madin Darby de Rim Canino , Camundongos , Neuraminidase/genética , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/genética , RNA Viral/biossíntese , RNA Viral/genética , Especificidade da Espécie , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
J Virol ; 86(8): 4110-22, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22301146

RESUMO

Human noroviruses (family Caliciviridae) are the leading cause of nonbacterial gastroenteritis worldwide. Although Human noroviruses are significant enteric pathogens, there exists no reliable vaccine or therapy to treat infected individuals. To date, attempts to cultivate Human noroviruses within the laboratory have met with little success; however, the related murine norovirus mouse norovirus 1 (MNV-1) has provided an ideal model system to study norovirus replication due to the ease with which the virus is cultivated and the ability to infect a small animal model with this virus. Previously we have identified the association between MNV-1 and components of the host secretory pathway and proposed a role for the viral open reading frame 1 proteins in the replication cycle. Here we describe for the first time a role for cytoskeletal components in early MNV-1 replication events. We show that the MNV-1 utilizes microtubules to position the replication complex adjacent to the microtubule organizing center. Chemical disruption of the microtubule network disperses the sites of MNV-1 replication throughout the cell and impairs production of viral protein and infectious virus. Furthermore, we demonstrate the ability of MNV-1 to redistribute acetylated tubulin to the replication complex and that this association is potentially mediated via the MNV-1 major structural protein, VP1. Transient expression of MNV-1 VP1 exhibited extensive colocalization with both α-tubulin and acetylated tubulin and was observed to alter the distribution of acetylated tubulin in transfected cells. This study highlights the role of the cytoskeleton in early virus replication events and demonstrates the importance of this interaction in establishing the intracellular location of MNV-1 replication complexes.


Assuntos
Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Norovirus/fisiologia , Replicação Viral/fisiologia , Acetilação , Actinas/metabolismo , Animais , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Camundongos , Microtúbulos/genética , Norovirus/genética , Norovirus/metabolismo , Ligação Proteica , Transporte Proteico , Tubulina (Proteína)/metabolismo
6.
J Virol ; 84(20): 10438-47, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20686019

RESUMO

The cytoplasmic replication of positive-sense RNA viruses is associated with a dramatic rearrangement of host cellular membranes. These virus-induced changes result in the induction of vesicular structures that envelop the virus replication complex (RC). In this study, we have extended our previous observations on the intracellular location of West Nile virus strain Kunjin virus (WNV(KUN)) to show that the virus-induced recruitment of host proteins and membrane appears to occur at a pre-Golgi step. To visualize the WNV(KUN) replication complex, we performed three-dimensional (3D) modeling on tomograms from WNV(KUN) replicon-transfected cells. These analyses have provided a 3D representation of the replication complex, revealing the open access of the replication complex with the cytoplasm and the fluidity of the complex to the rough endoplasmic reticulum. In addition, we provide data that indicate that a majority of the viral RNA species housed within the RC is in a double-stranded RNA (dsRNA) form.


Assuntos
Retículo Endoplasmático/virologia , Replicação Viral/fisiologia , Vírus do Nilo Ocidental/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/ultraestrutura , Glicoproteínas/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Imageamento Tridimensional , Microscopia Eletrônica de Transmissão , RNA Viral/biossíntese , RNA Viral/genética , RNA Viral/ultraestrutura , Replicon/genética , Transfecção , Células Vero , Proteínas não Estruturais Virais/fisiologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/ultraestrutura
7.
Front Cell Dev Biol ; 9: 655606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055786

RESUMO

Flavivirus replication is intimately associated with re-organized cellular membranes. These virus-induced changes in membrane architecture form three distinct membranous "organelles" that have specific functions during the flavivirus life cycle. One of these structures is the replication complex in which the flaviviral RNA is replicated to produce progeny genomes. We have previously observed that this process is strictly dependent on cellular cholesterol. In this study we have identified a putative cholesterol recognition/interaction amino acid consensus (CRAC) motif within the West Nile virus strain Kunjin virus (WNVKUN) NS4A protein. Site-directed mutagenesis of this motif within a WNVKUN infectious clone severely attenuated virus replication and the capacity of the mutant viruses to form the replication complex. Replication of the mutant viruses also displayed reduced co-localization with cellular markers recruited to replication sites during wild-type virus replication. In addition, we observed that the mutant viruses were significantly impaired in their ability to remodel cytoplasmic membranes. However, after extensive analysis we are unable to conclusively reveal a role for the CRAC motif in direct cholesterol binding to NS4A, suggesting additional complex lipid-protein and protein-protein interactions. We believe this study highlights the crucial role for this region within NS4A protein in recruitment of cellular and viral proteins to specialized subdomains on membrane platforms to promote efficient virus replication.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30739429

RESUMO

As part of its role in the World Health Organization's (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a total of 4,247 human influenza positive samples during 2016. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties and also propagated in qualified cells and hens eggs for potential seasonal influenza vaccine virus candidates. In 2016, influenza A(H3) viruses predominated over influenza A(H1)pdm09 and B viruses, accounting for a total of 51% of all viruses analysed. The vast majority of A(H1)pdm09, A(H3) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the Southern Hemisphere in 2016. However, phylogenetic analysis of a selection of viruses indicated that the majority of circulating A(H3) viruses had undergone some genetic drift relative to the WHO recommended strain for 2016. Of more than 3,000 samples tested for resistance to the neuraminidase inhibitors oseltamivir and zanamivir, six A(H1)pdm09 viruses and two B/Victoria lineage viruses showed highly reduced inhibition to oseltamivir.

9.
J Clin Virol ; 97: 54-58, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29127947

RESUMO

BACKGROUND: The isolation and propagation of influenza viruses from clinical specimens are essential tools for comprehensive virologic surveillance. Influenza viruses must be amplified in cell culture for detailed antigenic analysis and for phenotypic assays assessing susceptibility to antiviral drugs or for other assays. OBJECTIVES: To conduct an external quality assessment (EQA) of proficiency for isolation and identification of influenza viruses using cell culture techniques among National Influenza Centres (NICs) in the World Health Organisation (WHO) South East Asia and Western Pacific Regions. STUDY DESIGN: Twenty-one NICs performed routine influenza virus isolation and identification techniques on a proficiency testing panel comprising 16 samples, containing influenza A or B viruses and negative control samples. One sample was used exclusively to determine their capacity to measure hemagglutination titer and the other 15 samples were used for virus isolation and identification. RESULTS: All NICs performed influenza virus isolation using Madin Darby canine kidney (MDCK) or MDCK-SIAT-1 cells. If virus growth was detected, the type, subtype and/or lineage of virus present in isolates was determined using immunofluorescence, RT-PCR and/or hemagglutination inhibition (HI) assays. Most participating laboratories could detect influenza virus growth and could identify virus amplified from EQA samples. However, some laboratories failed to isolate and identify viruses from EQA samples that contained lower titres of virus, highlighting issues regarding the sensitivity of influenza virus isolation methods between laboratories. CONCLUSION: This first round of EQA was successfully conducted by NICs in the Asia Pacific Region, revealing good proficiency in influenza virus isolation and identification.


Assuntos
Técnicas de Cultura de Células/normas , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Controle de Qualidade , Animais , Antivirais/farmacologia , Ásia , Sudeste Asiático , Técnicas de Cultura de Células/métodos , Cães , Humanos , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza B/classificação , Vírus da Influenza B/genética , Vírus da Influenza B/crescimento & desenvolvimento , Influenza Humana , Células Madin Darby de Rim Canino , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Sci Rep ; 6: 19428, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26763587

RESUMO

The ubiquitous presence of cell-surface sialic acid (SIA) has complicated efforts to identify specific transmembrane glycoproteins that function as bone fide entry receptors for influenza A virus (IAV) infection. The C-type lectin receptors (CLRs) DC-SIGN (CD209) and L-SIGN (CD209L) enhance IAV infection however it is not known if they act as attachment factors, passing virions to other unknown receptors for virus entry, or as authentic entry receptors for CLR-mediated virus uptake and infection. Sialic acid-deficient Lec2 Chinese Hamster Ovary (CHO) cell lines were resistant to IAV infection whereas expression of DC-SIGN/L-SIGN restored susceptibility of Lec2 cells to pH- and dynamin-dependent infection. Moreover, Lec2 cells expressing endocytosis-defective DC-SIGN/L-SIGN retained capacity to bind IAV but showed reduced susceptibility to infection. These studies confirm that DC-SIGN and L-SIGN are authentic endocytic receptors for IAV entry and infection.


Assuntos
Moléculas de Adesão Celular/metabolismo , Endocitose , Vírus da Influenza A/fisiologia , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Animais , Células CHO , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Linhagem Celular , Cricetulus , Cães , Dinaminas/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Lectinas Tipo C/química , Lectinas Tipo C/genética , Mutação , Ácido N-Acetilneuramínico/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Ligação Viral
11.
Virology ; 448: 104-16, 2014 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-24314641

RESUMO

Flaviviruses have evolved means to evade host innate immune responses. Recent evidence suggests this is due to prevention of interferon production and signaling in flavivirus-infected cells. Here we show that the interferon-induced MxA protein can sequester the West Nile virus strain Kunjin virus (WNVKUN) capsid protein in cytoplasmic tubular structures in an expression-replication system. This sequestering resulted in reduced titers of secreted WNVKUN particles. We show by electron microscopy, tomography and 3D modeling that these cytoplasmic tubular structures form organized bundles. Additionally we show that recombinant ER-targeted MxA can restrict production of infectious WNVKUN under conditions of virus infection. Our results indicate a co-ordinated and compartmentalized WNVKUN assembly process may prevent recognition of viral components by MxA, particularly the capsid protein. This recognition can be exploited if MxA is targeted to intracellular sites of WNVKUN assembly. This results in further understanding of the mechanisms of flavivirus evasion from the immune system.


Assuntos
Evasão da Resposta Imune , Proteínas de Resistência a Myxovirus/imunologia , Montagem de Vírus , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Ligação Proteica , Eliminação de Partículas Virais , Febre do Nilo Ocidental/genética , Febre do Nilo Ocidental/metabolismo , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA