Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(19): e202303982, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38205882

RESUMO

Cancer, responsible for approximately 10 million lives annually, urgently requires innovative treatments, as well as solutions to mitigate the limitations of traditional chemotherapy, such as long-term adverse side effects and multidrug resistance. This review focuses on Carbon Dots (CDs), an emergent class of nanoparticles (NPs) with remarkable physicochemical and biological properties, and their burgeoning applications in bioimaging and as nanocarriers in drug delivery systems for cancer treatment. The review initiates with an overview of NPs as nanocarriers, followed by an in-depth look into the biological barriers that could affect their distribution, from barriers to administration, to intracellular trafficking. It further explores CDs' synthesis, including both bottom-up and top-down approaches, and their notable biocompatibility, supported by a selection of in vitro, in vivo, and ex vivo studies. Special attention is given to CDs' role in bioimaging, highlighting their optical properties. The discussion extends to their emerging significance as drug carriers, particularly in the delivery of doxorubicin and other anticancer agents, underscoring recent advancements and challenges in this field. Finally, we showcase examples of other promising bioapplications of CDs, emergent owing to the NPs flexible design. As research on CDs evolves, we envisage key challenges, as well as the potential of CD-based systems in bioimaging and cancer therapy.


Assuntos
Antineoplásicos , Nanopartículas , Pontos Quânticos , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/uso terapêutico , Nanopartículas/química , Doxorrubicina , Portadores de Fármacos , Pontos Quânticos/química
2.
Molecules ; 27(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35011272

RESUMO

Hyaluronic acid (HA) has been implemented for chemo and photothermal therapy to target tumour cells overexpressing the CD44+ receptor. HA-targeting hybrid systems allows carbon nanomaterial (CNM) carriers to efficiently deliver anticancer drugs, such as doxorubicin and gemcitabine, to the tumour sites. Carbon nanotubes (CNTs), graphene, graphene oxide (GO), and graphene quantum dots (GQDs) are grouped for a detailed review of the novel nanocomposites for cancer therapy. Some CNMs proved to be more successful than others in terms of stability and effectiveness at removing relative tumour volume. While the literature has been focused primarily on the CNTs and GO, other CNMs such as carbon nano-onions (CNOs) proved quite promising for targeted drug delivery using HA. Near-infrared laser photoablation is also reviewed as a primary method of cancer therapy-it can be used alone or in conjunction with chemotherapy to achieve promising chemo-photothermal therapy protocols. This review aims to give a background into HA and why it is a successful cancer-targeting component of current CNM-based drug delivery systems.


Assuntos
Antineoplásicos/administração & dosagem , Carbono/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Nanoestruturas/química , Animais , Antineoplásicos/química , Gerenciamento Clínico , Liberação Controlada de Fármacos , Grafite , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Conformação Molecular , Estrutura Molecular , Nanotubos de Carbono , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Molecules ; 25(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858929

RESUMO

The properties of carbon nano-onions (CNOs) make them attractive electrode materials/additives for the development of low-cost, simple to use and highly sensitive Screen Printed Electrodes (SPEs). Here, we report the development of the first CNO-based ink for the fabrication of low-cost and disposable electrodes, leading to high-performance sensors. Achieving a true dispersion of CNOs is intrinsically challenging and a key aspect of the ink formulation. The screen-printing ink formulation is achieved by carefully selecting and optimising the conductive materials (graphite (GRT) and CNOs), the polymer binder, the organic solvent and the plasticiser. Our CNO/GRT-based screen-printed electrodes consist of an interconnected network of conducting carbon particles with a uniform distribution. Electrochemical studies show a heterogeneous electron transfer rate constant of 1.3 ± 0.7 × 10-3 cm·s-1 and a higher current density than the ferrocene/ferrocenium coupled to a commercial graphite SPEs. In addition, the CNO/GRT SPE can detect dopamine in the concentration range of 10.0-99.9 µM with a limit of detection of 0.92 µM (N = 3). They exhibit a higher analytical sensitivity than the commercial graphite-based SPE, with a 4-fold improvement observed. These results open up the possibility of using high-performing CNO-based SPEs for electrochemical applications including sensors, battery electrodes and electrocatalysis.


Assuntos
Carbono/química , Técnicas Eletroquímicas , Nanoestruturas/química , Impressão Tridimensional , Eletrodos
4.
Chemistry ; 22(39): 13976-13984, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27516153

RESUMO

Among known molecular switches, spiropyrans attract considerable interest because of their reversible responsiveness to external stimuli and the deep conformational and electronic changes that characterize the switching process between the two isomeric forms [spiropyran (SP) and merocyanine (MC)]. Metal coordination is one of the most interesting aspects of spiropyrans for its potential in sensing, catalysis, and medicinal chemistry, but little is known about the details surrounding spiropyran-metal ion binding. We investigated the interplay between an N-modified 8-methoxy-6-nitrospiropyran (SP-E), designed to provide appropriate molecular flexibility and a range of competing/collaborative metal binding sites, with Mg2+ , Cu2+ and Zn2+ , which were chosen for their similar coordination geometry preferences while differing in their hard/soft character. The formed molecular complexes were studied by means of UV/Vis, fluorescence, and NMR spectroscopies and mass spectrometry, and the crystal structure of the SP-E-Cu complex was also obtained. The results indicate that the Mg2+ , Zn2+ and Cu2+ complexes have identical coordination stoichiometry. Furthermore, the Mg2+ and Zn2+ complexes display fluorescence properties in solution and visible-light responsiveness. These results provide important spectroscopic and structural information that can serve as a foundation for rational design of spiropyran-based smart materials for metal sensing and scavenging applications.

5.
Chemistry ; 21(27): 9727-32, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26015289

RESUMO

A series of π-extended distyryl-substituted boron dipyrromethene (BODIPY) derivatives with intense far-red/near-infrared (NIR) fluorescence was synthesized and characterized, with a view to enhance the dye's performance for fluorescence labeling. An enhanced brightness was achieved by the introduction of two methyl substituents in the meso positions on the phenyl group of the BODIPY molecule; these substituents resulted in increased structural rigidity. Solid-state fluorescence was observed for one of the distyryl-substituted BODIPY derivatives. The introduction of a terminal bromo substituent allows for the subsequent immobilization of the BODIPY fluorophore on the surface of carbon nano-onions (CNOs), which leads to potential imaging agents for biological and biomedical applications. The far-red/NIR-fluorescent CNO nanoparticles were characterized by absorption, fluorescence, and Raman spectroscopies, as well as by thermogravimetric analysis, dynamic light scattering, high-resolution transmission electron microscopy, and confocal microscopy.

6.
Chemistry ; 21(52): 19071-80, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26577582

RESUMO

Carbon-based nanomaterials have attracted much interest during the last decade for biomedical applications. Multimodal imaging probes based on carbon nano-onions (CNOs) have emerged as a platform for bioimaging because of their cell-penetration properties and minimal systemic toxicity. Here, we describe the covalent functionalization of CNOs with fluorescein and folic acid moieties for both imaging and targeting cancer cells. The modified CNOs display high brightness and photostability in aqueous solutions and their selective and rapid uptake in two different cancer cell lines without significant cytotoxicity was demonstrated. The localization of the functionalized CNOs in late-endosomes cell compartments was revealed by a correlative approach with confocal and transmission electron microscopy. Understanding the biological response of functionalized CNOs with the capability to target cancer cells and localize the nanoparticles in the cellular environment, will pave the way for the development of a new generation of imaging probes for future biomedical studies.


Assuntos
Carbono/química , Receptor 1 de Folato/química , Nanoestruturas/química , Cebolas/química , Receptor 1 de Folato/metabolismo , Humanos , Microscopia Eletrônica de Transmissão
7.
J Colloid Interface Sci ; 659: 339-354, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176243

RESUMO

Nanotechnology's potential in revolutionising cancer treatments is evident in targeted drug delivery systems (DDSs) engineered to optimise therapeutic efficacy and minimise toxicity. This study examines a novel nanocarrier constructed with carbon nano-onions (CNOs), engineered and evaluated for its ability to selectively target cancer cells overexpressing the hyaluronic acid receptor; CD44. Our results highlighted that the CNO-based nanocarrier coupled with hyaluronic acid as the targeting agent demonstrated effective uptake by CD44+ PANC-1 and MIA PaCa-2 cells, while avoiding CD44- Capan-1 cells. The CNO-based nanocarrier also exhibited excellent biocompatibility in all tested pancreatic ductal adenocarcinoma (PDAC) cells, as well as healthy cells. Notably, the CNO-based nanocarrier was successfully loaded with chemotherapeutic 4-(N)-acyl- sidechain-containing prodrugs derived from gemcitabine (GEM). These prodrugs alone exhibited remarkable efficacy in killing PDAC cells which are known to be GEM resistant, and their efficacy was amplified when combined with the CNO-based nanocarrier, particularly in targeting GEM-resistant CD44+ PDAC cells. These findings demonstrate the potential of CNOs as promising scaffolds in advancing targeted DDSs, signifying the translational potential of carbon nanoparticles for cancer therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pró-Fármacos , Humanos , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Cebolas , Ácido Hialurônico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral
8.
Small ; 9(24): 4194-206, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23839951

RESUMO

The inflammatory effects of carbon nanoparticles (NPs) are highly disputed. Here it is demonstrated that endotoxin-free preparations of raw carbon nanotubes (CNTs) are very limited in their capacity to promote inflammatory responses in vitro, as well as in vivo. Upon purification and selective oxidation of raw CNTs, a higher dispersibility is achieved in physiological solutions, but this process also enhances their inflammatory activity. In synergy with toll-like receptor (TLR) ligands, CNTs promote NLRP3 inflammasome activation and it is shown for the first time that this property extends to spherical carbon nano-onions (CNOs) of 6 nm in size. In contrast, the benzoic acid functionalization of purified CNTs and CNOs leads to significantly attenuated inflammatory properties. This is evidenced by a reduced secretion of the inflammatory cytokine IL-1ß, and a pronounced decrease in the recruitment of neutrophils and monocytes following injection into mice. Collectively, these results reveal that the inflammatory properties of carbon NPs are highly dependent on their physicochemical characteristics and crucially, that chemical surface functionalization allows significant moderation of these properties.


Assuntos
Proteínas de Transporte/química , Inflamação/patologia , Nanotubos de Carbono/química , Animais , Células Apresentadoras de Antígenos , Caspase 1/metabolismo , Células Dendríticas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Ligantes , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nanopartículas/química , Nanotecnologia , Oxigênio/química , Propriedades de Superfície
9.
J Org Chem ; 78(9): 4270-7, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23565861

RESUMO

The sequential combination of native chemical ligation and thiol-ene radical chemistry (NCL-TEC) on the resulting cysteine thiol has been investigated as a methodology for rapidly accessing functionalized peptides. Three sequential cycles of native chemical ligation and subsequent thiyl radical reactions (including a free-radical-mediated desulfurization reaction) were carried out on a peptide backbone demonstrating the iterative nature of this process. The versatility of the thiyl radical reaction at cysteine was demonstrated through the introduction of a number of different side chains including an amino acid derivative, a carbohydrate group, and an alkyl azide. Conditions were developed that allowed the sequential NCL-TEC process to proceed in high yield.


Assuntos
Técnicas de Química Sintética/métodos , Glicopeptídeos/síntese química , Compostos de Sulfidrila/química , Carboidratos/química , Cisteína/química , Radicais Livres/química , Glicopeptídeos/química , Modelos Químicos
10.
Compr Psychiatry ; 54(6): 702-12, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23618607

RESUMO

The aims of this study are to (1) empirically identify the personality subtypes of adolescents with anorexic disorders and (2) investigate the personality disorders, identity disturbances, and affective features associated with the different subtypes. We assessed 102 adolescent patients with Eating Disorders (anorexia nervosa and eating disorder not otherwise specified) using three clinical instruments: the Shedler-Westen Assessment Procedure for Adolescents (SWAP-200-A) (Westen D, Shedler J, Durrett C, Glass S, Martens A. Personality diagnoses in adolescence: DSM-IV Axis II diagnoses and an empirically derived alternative. Am J Psychiatry 2003;160:952-966), the Affective Regulation and Experience Questionnaire (AREQ) (Zittel Conklin C, Bradley R, Westen D. Affect regulation in borderline personality disorder. J Nerv Ment Dis 2006;194:69-77), and the Identity Disorder Questionnaire (IDQ) (Wilkinson-Ryan T, Westen D. Identity disturbance in borderline personality disorder: An empirical investigation. Am J Psychiatry 2000;157:528-541). We performed a Q factor analysis of the SWAP-200-A descriptions of our sample to identify personality subtypes. We correlated these personality styles with AREQ and IDQ factors and explored the personality differences among individuals with the different types of ED. The Q factor analysis identified three personality subtypes: high-functioning/perfectionist, emotionally dysregulated, and overcontrolled/constricted. Each subtype showed specific identity and affective features, comorbidities with different personality disorders, and clinical implications. These results contribute to the understanding of adolescents with ED and seem to be relevant for treatment planning.


Assuntos
Anorexia Nervosa/psicologia , Transtornos da Personalidade/diagnóstico , Personalidade/classificação , Adolescente , Anorexia Nervosa/complicações , Criança , Feminino , Humanos , Determinação da Personalidade , Transtornos da Personalidade/complicações , Transtornos da Personalidade/psicologia , Psicometria , Inquéritos e Questionários
11.
Chem Soc Rev ; 41(10): 4010-29, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22426200

RESUMO

This critical review focuses on the development of photochromic compounds as sensors for cations, anions, and biologically important molecules. The review commences with a brief description of photochromism and the strategies to exploit photochromic molecular switches' properties for sensing application. This is followed by a summary of photoswitchable receptors emerged to date and classified according to the photochromic structure they are based on. These include azobenzenes, fulgides, dithienylethenes, dihydroindolizines, chromenes and spiropyrans.

12.
Pharmaceutics ; 15(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242787

RESUMO

Carbon nanomaterials (CNMs) are an incredibly versatile class of materials that can be used as scaffolds to construct anticancer nanocarrier systems. The ease of chemical functionalisation, biocompatibility, and intrinsic therapeutic capabilities of many of these nanoparticles can be leveraged to design effective anticancer systems. This article is the first comprehensive review of CNM-based nanocarrier systems that incorporate approved chemotherapy drugs, and many different types of CNMs and chemotherapy agents are discussed. Almost 200 examples of these nanocarrier systems have been analysed and compiled into a database. The entries are organised by anticancer drug type, and the composition, drug loading/release metrics, and experimental results from these systems have been compiled. Our analysis reveals graphene, and particularly graphene oxide (GO), as the most frequently employed CNM, with carbon nanotubes and carbon dots following in popularity. Moreover, the database encompasses various chemotherapeutic agents, with antimicrotubule agents being the most common payload due to their compatibility with CNM surfaces. The benefits of the identified systems are discussed, and the factors affecting their efficacy are detailed.

13.
Int J Nanomedicine ; 18: 3897-3912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483316

RESUMO

Background: A nanoscale drug carrier could have a variety of therapeutic and diagnostic uses provided that the carrier is biocompatible in vivo. Carbon nano-onions (CNOs) have shown promising results as a nanocarrier for drug delivery. However, the systemic effect of CNOs in rodents is unknown. Therefore, we investigated the toxicity of CNOs following intravenous administration in female BALB/c mice. Results: Single or repeated administration of oxi-CNOs (125, 250 or 500 µg) did not affect mouse behavior or organ weight and there was also no evidence of hepatotoxicity or nephrotoxicity. Histological examination of organ slices revealed a significant dose-dependent accumulation of CNO aggregates in the spleen, liver and lungs (p<0.05, ANOVA), with a trace amount of aggregates appearing in the kidneys. However, CNO aggregates in the liver did not affect CYP450 enzymes, as total hepatic CYP450 as well as CYP3A catalytic activity, as meased by erythromycin N-demethylation, and protein levels showed no significant changes between the treatment groups compared to vehicle control. CNOs also failed to act as competitive inhibitors of CYP3A in vitro in both mouse and human liver microsomes. Furthermore, CNOs did not cause oxidative stress, as indicated by the unchanged malondialdehyde levels and superoxide dismutase activity in liver microsomes and organ homogenates. Conclusion: This study provides the first evidence that short-term intravenous administration of oxi-CNOs is non-toxic to female mice and thus could be a promising novel and safe drug carrier.


Assuntos
Carbono , Citocromo P-450 CYP3A , Camundongos , Feminino , Humanos , Animais , Cebolas , Sistema Enzimático do Citocromo P-450 , Administração Intravenosa
14.
Org Biomol Chem ; 10(6): 1162-71, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22146800

RESUMO

A series of four spiropyrans bearing different substituents on the indolic nitrogen were synthesized and their capability of binding mono and bivalent transition metal cations in solution was assessed via UV-visible absorption spectroscopy. All the compounds responded selectively to the presence of Cu(ii) ions producing intense absorption bands in the visible region of their spectra. Bidimensional (1)H-NMR and MALDI-TOF MS spectroscopies revealed the formation of SP dimers mediated by Cu(ii). This is the first example of cross-coupling mediated by copper(ii) in mild conditions causing the symmetric dimerization of spiropyran dyes.


Assuntos
Benzopiranos/química , Cobre/química , Indóis/química , Nitrocompostos/química , Compostos Organometálicos/síntese química , Cátions/química , Espectrometria de Massas , Estrutura Molecular , Compostos Organometálicos/química , Processos Fotoquímicos , Espectrofotometria Ultravioleta
15.
Phys Chem Chem Phys ; 14(17): 6034-43, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22446851

RESUMO

Light controllable release of antinflammatory zinc ions by a smart multifunctional material composed of spiropyrans and single walled carbon nanotubes (SWNTs) is demonstrated. The exploitation of a number of complementary characterization techniques allows the investigation of both composition and performance of the multifunctional SP/SWNT nanomaterial developed. Moreover, its suitability for potential applications in bio-systems is suggested by the effective removal of the metal catalyst and the introduction of biocompatible linkers into the SP/SWNT material. The realization of potential photo controllable SP/SWNTs based drug delivery systems (DDSs) is envisaged, where nanotubes act as intracellular carriers of light modulated receptors for bioactive agents.


Assuntos
Benzopiranos/química , Indóis/química , Nanotubos de Carbono/química , Nitrocompostos/química , Zinco/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Íons/química , Luz , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
16.
Front Chem ; 10: 859450, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433638

RESUMO

Cancer is a globally prevalent cause of premature mortality. Of growing interest is the development of novel anticancer therapies and the optimisation of associated risks. Major issues presently facing conventional anticancer therapies include systemic toxicity, poor solubility, membrane permeability, and multidrug resistance Nanocarriers have been employed to address these issues. Nanocarriers encapsulate anticancer drugs, enabling them to bypass biological barriers and minimise their adverse side effects. These drug delivery systems offer extensive benefits as they can be modified to gravitate towards specific environmental conditions. To further enhance the safety and efficacy of these drug carriers, modern developments have included incorporating a molecular switching mechanism into their structure. These molecular switches are responsive to endogenous and exogenous stimuli and may undergo reversible and repeatable conformational changes when activated. The incorporation of molecular switches can, therefore, impart stimuli-responsive drug-release control on a DDS. These stimuli can then be manipulated to offer precise dosage control over the drug release at a specific target site. This review discusses recent developments in the design of DDSs incorporating light and pH-responsive molecular switches as drug release controllers.

17.
Materials (Basel) ; 15(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36079368

RESUMO

Boron/nitrogen co-doped carbon nano-onions (BN-CNOs) are spherical nanoparticles that consist of multiple inter-nestled fullerene layers, giving them an onion-like internal structure. They have potential as nanocarriers due to their small size, aqueous dispersibility, and biocompatibility. The non-covalent attachment of a biocompatible polymer to BN-CNOs is a simple and effective method of creating a scaffold for a novel nanocarrier system as it allows for increased aqueous dispersibility whilst preventing the immune system from recognising the particle as a foreign object. The non-covalent approach also preserves the electronic and structural properties of the BN-CNOs. In this study, we attached a hyaluronic acid-phospholipid (HA-DMPE) conjugate polymer to the BN-CNO's surface to improve its hydrophilicity and provide targetability toward HA-receptor overexpressing cancer cells. To this end, various ratios of HA-DMPE to BN-CNOs were investigated. The resulting supramolecular systems were characterised via UV-Vis absorption and FTIR spectroscopy, dynamic light scattering, and zeta potential techniques. It was found that the HA-DMPE conjugate polymer was permanently wrapped around the BN-CNO nanoparticle surface. Moreover, the resulting BN-CNO/HA-DMPE supramolecular systems displayed enhanced aqueous solubility compared to unfunctionalised BN-CNOs, with excellent long-term stability observed in aqueous dispersions.

18.
Materials (Basel) ; 15(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35160982

RESUMO

Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-chemical properties-their handling and characterization require very different specialized skills. Therefore, their combination is not trivial. Numerous studies exist at the interface between these two components-especially in the area of sensing-but also involving biofuel cells, biocatalysis, and even biomedical applications including innovative therapeutic approaches and theranostics. Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play an important role in controlling the environmental fate of these structures after their use. CNMs' widespread use has created more and more opportunities for their entry into the environment, and thus it becomes increasingly important to understand how to biodegrade them. In this concise review, we will cover the progress made in the last five years on this exciting topic, focusing on the applications, and concluding with future perspectives on research combining carbon nanomaterials and enzymes.

19.
Nanomaterials (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36616081

RESUMO

Nanocomposite hydrogels have attracted researchers' attention in recent years to achieve superior performances in a variety of materials applications. In this work, we describe the outcome of three different strategies to combine a self-assembling tripeptide and carbon nano-onions (CNOs), through covalent and non-covalent approaches, into supramolecular and nanostructured hydrogels. Importantly, the tripeptide coated the nano-onions and extended their aqueous dispersions' stability by several hours. Furthermore, CNOs could be loaded in the tripeptide hydrogels at the highest level ever reported for nanocarbons, indicating high compatibility between the components. The materials were formed in phosphate-buffered solutions, thus paving the way for biological applications, and were characterized by several spectroscopic, microscopic, thermogravimetric, and rheological techniques. In vitro experiments demonstrated excellent cytocompatibility.

20.
Phys Chem Chem Phys ; 13(23): 11373-83, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21584329

RESUMO

The 1-hexadecyl-3-vinylimidazolium bromide (hvimBr), a water-soluble long-chain imidazolium ionic liquid (IL) with surfactant properties, showed the ability to produce stable homogeneous aqueous dispersions of pristine Single-Walled Carbon Nanotubes (SWNTs). The purpose of this study is the improvement of SWNT dispersing ability by assessing the effect of different groups in position 3 of the imidazole ring. In this regard structural analogues were synthesized and, after characterization, their capability to dissolve SWNTs in water was investigated. Molecular Dynamics (MD) simulations have been performed to provide a semi-quantitative indication of the affinity of each dispersing agent toward SWNT and to attempt an explanation of the experimental results.


Assuntos
Imidazóis/química , Líquidos Iônicos/química , Modelos Teóricos , Nanotubos de Carbono/química , Tensoativos/química , Compostos de Vinila/química , Água/química , Simulação de Dinâmica Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA