Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38610261

RESUMO

This theoretical study presents the design and analytical/numerical optimization of novel dual-channel transverse fields radiofrequency (RF) surface coils for 1.5 T Magnetic Resonance Imaging (MRI). The research explores a planar setup with two channels on a row with aligned spatial orientation of the RF coils, aiming to solve a common design drawback of single-channel transverse field RF coils: the reduced Field Of View (FOV) along the direction of the RF field. A significant challenge in this design is the efficient decoupling of two sets of transverse field RF coils to prevent mutual interference. Our modeling approach integrates thin wire theoretical modeling, magnetostatic computation for strip conductor coils, and their full-wave electromagnetic simulation. Key findings at 64 MHz demonstrate that strategic geometric placement among the two-channel RF coil and the introduction of geometrical asymmetry in the design of the individual RF coils does minimize the mutual inductance, paving the way for effective dual-channel MRI applications. This decoupling approach allows to enhance the FOV, providing a theoretical framework for the development of optimized dual-channel transverse field RF coil configurations. The current design was validated with full-wave numerical study at 64 MHz (1H, 1.5 T), has the potential to be extended at lower or higher frequencies, and the presence of lossy samples needs to be considered in the latter case.

2.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732822

RESUMO

Magnetic resonance (MR) with sodium (23Na) is a noninvasive tool providing quantitative biochemical information regarding physiology, cellular metabolism, and viability, with the potential to extend MR beyond anatomical proton imaging. However, when using clinical scanners, the low detectable 23Na signal and the low 23Na gyromagnetic ratio require the design of dedicated radiofrequency (RF) coils tuned to the 23Na Larmor frequency and sequences, as well as the development of dedicated phantoms for testing the image quality, and an MR scanner with multinuclear spectroscopy (MNS) capabilities. In this work, we propose a hardware and software setup for evaluating the potential of 23Na magnetic resonance imaging (MRI) with a clinical scanner. In particular, the reliability of the proposed setup and the reproducibility of the measurements were verified by multiple acquisitions from a 3T MR scanner using a homebuilt RF volume coil and a dedicated sequence for the imaging of a phantom specifically designed for evaluating the accuracy of the technique. The final goal of this study is to propose a setup for standardizing clinical and research 23Na MRI protocols.


Assuntos
Imageamento por Ressonância Magnética , Imagens de Fantasmas , Software , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/instrumentação , Sódio/química , Humanos , Isótopos de Sódio , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes
3.
Sensors (Basel) ; 24(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38544216

RESUMO

Radiofrequency (RF) coils for magnetic resonance imaging (MRI) applications serve to generate RF fields to excite the nuclei in the sample (transmit coil) and to pick up the RF signals emitted by the nuclei (receive coil). For the purpose of optimizing the image quality, the performance of RF coils has to be maximized. In particular, the transmit coil has to provide a homogeneous RF magnetic field, while the receive coil has to provide the highest signal-to-noise ratio (SNR). Thus, particular attention must be paid to the coil simulation and design phases, which can be performed with different computer simulation techniques. Being largely used in many sectors of engineering and sciences, machine learning (ML) is a promising method among the different emerging strategies for coil simulation and design. Starting from the applications of ML algorithms in MRI and a short description of the RF coil's performance parameters, this narrative review describes the applications of such techniques for the simulation and design of RF coils for MRI, by including deep learning (DL) and ML-based algorithms for solving electromagnetic problems.

4.
Sensors (Basel) ; 23(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37420752

RESUMO

The design of optimized radiofrequency (RF) coils is a fundamental task for maximizing the signal-to-noise ratio (SNR) in Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) applications. An efficient coil should be designed by minimizing the coil noise with respect to the sample noise, since coil conductor resistance affects data quality by reducing the SNR, especially for coils tuned to a low frequency. Such conductor losses strongly depend on the frequency (due to the skin effect) and on the conductor cross-sectional shape (strip or wire). This paper reviews the different methods for estimating conductor losses in RF coils for MRI/MRS applications, comprising analytical formulations, theoretical/experimental hybrid approaches and full-wave simulations. Moreover, the different strategies for minimizing such losses, including the use of Litz wire, cooled and superconducting coils, are described. Finally, recent emerging technologies in RF coil design are briefly reviewed.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Razão Sinal-Ruído , Imagens de Fantasmas
5.
Sensors (Basel) ; 24(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38203099

RESUMO

Radiofrequency (RF) coils are key components in Magnetic Resonance (MR) systems and can be categorized into volume and surface coils according to their shapes. Volume RF coils can generate a uniform field in a large central sample's region, while surface RF coils, usually smaller than volume coils, typically have a higher Signal-to-Noise Ratio (SNR) in a reduced Region Of Interest (ROI) close to the coil plane but a relatively poorer field homogeneity. Circular and square loops are the simplest and most used design for developing axial field surface RF coils. However, for specific MR applications, the use of dedicated transverse field RF coils can be necessary or advantageous. Building on a previously developed and validated RF coil simulator, based on the magnetostatic approach, here we explore the potential applications of novel multiple axial field and transverse field surface RF coils in non-standard configurations. We demonstrate via numerical simulations that simple volume RF coils, matching a Helmholtz-like design, can be built with two identical transverse field RF coils separated by a given distance. Following well-known principles, the SNR of such novel configurations can be improved by a factor of up to √2 by combining two 90° rotated coils, producing, inside a central ROI, a circularly polarized B1 field.

6.
Sensors (Basel) ; 22(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890812

RESUMO

In recent years, the usage of radio frequency magnetic fields for biomedical applications has increased exponentially. Several diagnostic and therapeutic methodologies exploit this physical entity such as, for instance, magnetic resonance imaging, hyperthermia with magnetic nanoparticles and transcranial magnetic stimulation. Within this framework, the magnetic field focusing and shaping, at different depths inside the tissue, emerges as one of the most important challenges from a technological point of view, since it is highly desirable for improving the effectiveness of clinical methodologies. In this review paper, we will first report some of the biomedical practices employing radio frequency magnetic fields, that appear most promising in clinical settings, explaining the underneath physical principles and operative procedures. Specifically, we direct the interest toward hyperthermia with magnetic nanoparticles and transcranial magnetic stimulation, together with a brief mention of magnetic resonance imaging. Additionally, we deeply review the technological solutions that have appeared so far in the literature to shape and control the radio frequency magnetic field distribution within biological tissues, highlighting human applications. In particular, volume and surface coils, together with the recent raise of metamaterials and metasurfaces will be reported. The present review manuscript can be useful to fill the actual gap in the literature and to serve as a guide for the physicians and engineers working in these fields.


Assuntos
Corpo Humano , Hipertermia Induzida , Humanos , Hipertermia Induzida/métodos , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio
7.
Rev Cardiovasc Med ; 17(3-4): 124-130, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144019

RESUMO

Cardiac magnetic resonance (CMR) is a relevant diagnostic tool for the evaluation of cardiac morphology, function, and mass. The assessment of myocardial tissue content through the measurement of longitudinal (T1) and transversal (T2) relaxation properties and the development of different technical advances are important clinical novelties of CMR. Recently, magnetic resonance spectroscopy has been explored for the assessment of the metabolic state of tissue for cardiac function evaluation by using nuclei other than protons, such as 13C and 23Na, expanding our knowledge of the kinetics of metabolic processes. The design and development of dedicated radiofrequency coils and pulse sequences are fundamental to maximizing signal-to-noise ratio data while achieving faster cardiac examination. This review highlights the new technical developments in CMR sequences and coils.


Assuntos
Cardiopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Humanos , Miocárdio
8.
Crit Rev Biomed Eng ; 42(2): 109-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25403875

RESUMO

Magnetic resonance imaging and magnetic resonance spectroscopy are noninvasive diagnostic techniques based on the phenomenon of nuclear magnetic resonance. Radiofrequency coils are key components in both the transmission and receiving phases of magnetic resonance systems. Transmitter coils have to produce a highly homogeneous alternating field in a wide field of view, whereas receiver coils have to maximize signal detection while minimizing noise. Development of modern magnetic resonance coils often is based on numerical methods for simulating and predicting coil performance. Numerical methods allows the behavior of the coil in the presence of realistic loads to be simulated and the coil's efficiency at high magnetic fields to be investigated. After being built, coils have to be characterized in the laboratory to optimize their setting and performance by extracting several quality indices. Successively, coils performance has to be evaluated in a scanner using standardized image quality parameters with phantom and human experiments. This article reviews the principles of radiofrequency coils, coil performance parameters, and their estimation methods using simulations, workbench, and magnetic resonance experiments. Finally, an overview of future developments in radiofrequency coils technology is included.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/instrumentação , Desenho de Equipamento , Análise de Elementos Finitos , Razão Sinal-Ruído
9.
Diagnostics (Basel) ; 14(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786333

RESUMO

Cardiovascular disease shows, or may even be caused by, changes in metabolism. Hyperpolarized magnetic resonance spectroscopy and imaging is a technique that could assess the role of different aspects of metabolism in heart disease, allowing real-time metabolic flux assessment in vivo. In this review, we introduce the main hyperpolarization techniques. Then, we summarize the use of dedicated radiofrequency 13C coils, and report a state of the art of 13C data acquisition. Finally, this review provides an overview of the pre-clinical and clinical studies on cardiac metabolism in the healthy and diseased heart. We furthermore show what advances have been made to translate this technique into the clinic in the near future and what technical challenges still remain, such as exploring other metabolic substrates.

10.
NMR Biomed ; 25(7): 925-34, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22213413

RESUMO

MRS of hyperpolarized (13) C-labeled compounds represents a promising technique for in vivo metabolic studies. However, robust quantification and metabolic modeling are still important areas of investigation. In particular, time and spatial resolution constraints may lead to the analysis of MRS signals with low signal-to-noise ratio (SNR). The relationship between SNR and the precision of quantitative analysis for the evaluation of the in vivo kinetic behavior of metabolites is unknown. In this article, this topic is addressed by Monte Carlo simulations, covering the problem of MRS signal model parameter estimation, with strong emphasis on the peak amplitude and kinetic model parameters. The results of Monte Carlo simulation were confirmed by in vivo experiments on medium-sized animals injected with hyperpolarized [1-(13) C]pyruvate. The results of this study may be useful for the establishment of experimental planning and for the optimization of kinetic model estimation as a function of the SNR value.


Assuntos
Isótopos de Carbono/análise , Espectroscopia de Ressonância Magnética/métodos , Método de Monte Carlo , Algoritmos , Animais , Isótopos de Carbono/administração & dosagem , Simulação por Computador , Injeções Intravenosas , Cinética , Masculino , Modelos Animais , Piruvatos/administração & dosagem , Piruvatos/análise , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/análise , Razão Sinal-Ruído , Suínos
11.
Magn Reson Imaging ; 94: 7-17, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36084902

RESUMO

The study of fossils and mummies has largely benefited from the use of modern noninvasive and nondestructive imaging technologies and represents a fast developing area. In this review, we describe the emerging role of imaging based on Magnetic Resonance (MR) and Computer Tomography (CT) employed for the study of ancient remains and mummies. For each methodology, the state of the art in paleoradiology applications is described, by emphasizing new technologies developed in the field of both CT, such as micro- and nano-CT, dual-energy and multi-energy CT, and MR, with the description of novel dedicated sequences, radiofrequency coils and gradients. The complementarity of CT and MR in paleoradiology is also discussed, by pointing out what MR provides in addition to CT, with an overview on the state of the art of emerging strategies in the use of CT/MR combination for the study of a sample following a multimodal integrated approach.


Assuntos
Múmias , Múmias/diagnóstico por imagem , Fósseis , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Computadores , Imagem Multimodal
12.
Int J Occup Saf Ergon ; 28(1): 76-85, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32276568

RESUMO

The purpose of this study is to analyze exposure to the time-varying magnetic field caused by worker movements in a 3-T clinical magnetic resonance imaging (MRI) scanner. Measurements of the static magnetic field (B) in the proximity of the MRI scanner were performed to create a detailed map of the spatial gradient of B, in order to indicate the areas at high risk of exposure. Moreover, a personal exposure recording system was used in order to analyze and compare exposure to the static magnetic field during different routine procedures in MRI. We found that for all of the performed work activities, exposure was compliant with International Commission on Non-Ionizing Radiation Protection levels. However, our findings confirm that there is great variability of exposure between different workers and suggest the importance of performing personal exposure measurements and of detailed knowledge of the magnetic field spatial distribution.


Assuntos
Campos Magnéticos , Exposição Ocupacional , Campos Eletromagnéticos/efeitos adversos , Humanos , Imageamento por Ressonância Magnética , Movimento , Exposição Ocupacional/análise
13.
Med Biol Eng Comput ; 60(2): 297-320, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34586563

RESUMO

Magnetic resonance imaging (MRI) is one of the most-used diagnostic imaging methods worldwide. There are ∼50,000 MRI scanners worldwide each of which involves a minimum of five workers from different disciplines who spend their working days around MRI scanners. This review analyzes the state of the art of literature about the several aspects of the occupational exposure to electromagnetic fields (EMF) in MRI: regulations, literature studies on biological effects, and health surveillance are addressed here in detail, along with a summary of the main approaches for exposure assessment. The original research papers published from 2013 to 2021 in international peer-reviewed journals, in the English language, are analyzed, together with documents published by legislative bodies. The key points for each topic are identified and described together with useful tips for precise safeguarding of MRI operators, in terms of exposure assessment, studies on biological effects, and health surveillance.


Assuntos
Campos Eletromagnéticos , Exposição Ocupacional , Campos Eletromagnéticos/efeitos adversos , Humanos , Campos Magnéticos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Exposição Ocupacional/análise , Medição de Risco
14.
MAGMA ; 24(6): 323-30, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21892733

RESUMO

OBJECT: Staff operating in the environment of magnetic resonance imaging (MRI) scanners are exposed daily to static magnetic fields (MFs). To protect workers several guidelines are present in literature reporting exposure limits values expressed in terms of magnetic flux density or induced current density. We present here a novel tool for estimating the induced current density due to worker movement in the MR environment. MATERIALS AND METHODS: A Matlab script was created to estimate the induced current density J due to operator movements along a chosen walking path. RESULTS: The induced current density associated with any worker's movements during MR procedures is dependent on the walking speed and on the spatial gradient fields associated with a specific path. Some examples of possible worker paths were considered here for a 3 T MR scanner and a maximum value of 160 cm/s walking speed. CONCLUSION: This tool permits one to find exposure level for specific worker walking path and speed; it can be used as assessment tool in any MRI centre and for workers safety education. It is valid for any kind of commercial scanner because it requires only the knowledge of the MR scanner room map with isogauss lines.


Assuntos
Campos Eletromagnéticos , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Exposição Ocupacional/análise , Monitoramento de Radiação/métodos , Condutividade Elétrica , Segurança de Equipamentos , Humanos , Movimento , Exposição Ocupacional/prevenção & controle , Proteção Radiológica/métodos
15.
Rev Sci Instrum ; 92(8): 081402, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470386

RESUMO

Hyperpolarized 13C Magnetic Resonance (MR) is a promising technique for in vivo non-invasive assessment of metabolism in humans. Despite the considerable signal increase provided by hyperpolarization techniques, the low molar concentration of derivate 13C metabolites gives rise to technological limits in terms of data quality. The development of dedicated radio frequency coils, capable of providing a large field of view with high signal-to-noise ratio data, is thus a fundamental task. This work describes the design, simulation, and test of a surface and a volume coil, both designed to be integrated with a clinical scanner for hyperpolarized 13C studies in small animal models, with the purpose to provide a detailed characterization and comparison of their performance. In particular, coil inductance was evaluated with analytical calculation, while the magnetostatic theory was employed for coils magnetic field pattern estimation. Workbench tests permitted us to characterize coil performance in terms of quality factor and efficiency. Additionally, this Tutorial summarizes the acquisition experience for the reconstruction of 13C spectroscopic maps in phantom using the two designed coils and a 3 T MR clinical scanner. We believe that this Tutorial could be interesting for graduate students and researchers in the field of magnetic resonance coil design and development, especially for 13C studies.

16.
Med Phys ; 37(10): 5361-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21089771

RESUMO

PURPOSE: Hyperpolarized carbon-13 magnetic resonance spectroscopy is a novel and powerful tool for exploring the metabolic state of tissue, but a number of technological problems still limit this technology and need innovative solutions. In particular, the low molar concentration of derivate metabolites give rise to low signal-to-noise ratio (SNR), which makes the design and development of dedicated RF coils a task of fundamental importance. In this article, the authors describe the simulation and the design of a dedicated 13C surface coil for cardiac metabolism assessment in pig models. METHODS: A SNR model for a circular loop is presented and applied to the design of a 13C coil which guarantees the desired field-of-view and provides high SNR with a good penetration in deep sample regions. The coil resistance was calculated from Ohm's law and the magnetic field pattern was calculated using Biot-Savart law, while the sample induced resistance was calculated using a numerical finite-difference time-domain algorithm. Successively, a prototype of the coil was built and tested on the workbench and by acquisition of MR data. RESULTS: The comparison of SNR-vs-depth profiles between the theoretical SNR model and the experimental SNR extracted from the phantom chemical shift image (CSI) showed the accuracy of the authors' model. Moreover, the authors demonstrated the use of the coil for the acquisition of a CSI of a hyperpolarized [1-13C] pyruvate phantom. CONCLUSIONS: The results demonstrated the design trade-offs to successfully design a dedicated coil for cardiac imaging in the pig with hyperpolarized 13C by developing a SNR model which allows the prediction of the coil performance. This approach can be employed for deriving SNR formulations for coil with more complex geometries.


Assuntos
Isótopos de Carbono , Espectroscopia de Ressonância Magnética/instrumentação , Algoritmos , Animais , Fenômenos Biofísicos , Desenho de Equipamento , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Suínos
17.
Curr Med Imaging Rev ; 15(3): 301-307, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31989881

RESUMO

BACKGROUND: Cardiac magnetic resonance evaluations generally require a radiofrequency coil setup comprising a transmit whole-body coil and a receive coil. In particular, radiofrequency phased-array coils are employed to pick up the signals emitted by the nuclei with high signal-tonoise ratio and a large region of sensitivity. METHODS: Literature discussed different technical issues on how to minimize interactions between array elements and how to combine data from such elements to yield optimum Signal-to-Noise Ratio images. However, image quality strongly depends upon the correct coil position over the heart and of one array coil portion with respect to the other. RESULTS: In particular, simple errors in coil positioning could cause artifacts carrying to an inaccurate interpretation of cardiac magnetic resonance images. CONCLUSION: This paper describes the effect of array elements misalignment, starting from coil simulation to cardiac magnetic resonance acquisitions with a 1.5 T scanner. Phased-array coil simulation was performed using the magnetostatic approach; moreover, phantom and in vivo experiments with a commercial 8-elements cardiac phased-array receiver coil permitted to estimate signal-to-noise ratio and B1 mapping for aligned and shifted coil.


Assuntos
Interpretação de Imagem Assistida por Computador , Imagem Cinética por Ressonância Magnética/métodos , Controle de Qualidade , Razão Sinal-Ruído , Artefatos , Humanos , Imagens de Fantasmas
18.
Ann Work Expo Health ; 63(3): 328-336, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30852618

RESUMO

Concerning the occupational exposure in magnetic resonance imaging (MRI) facilities, the worker behavior in the magnetic resonance (MR) room is of such particular importance that there is the need for a simple but reliable method to alert the worker of the highest magnetic field exposure. Here, we describe a quantitative analysis of occupational exposure in different MRI working environments: in particular, we present a field measurement method integrated with a software tool for an accurate mapping of the fringe field in the proximity of the magnetic resonance bore. Three illustrative assessment studies are finally presented, compared and discussed, considering an example of a realistic path followed by an MRI worker during the daily procedure. The results show that the basic restrictions set by ICNIRP can be exceeded during standard procedure even in 1.5 T scanners. Using the described simplified metrics, it is possible to introduce behavioral rules on how to move around an MRI room that could be more useful than a numerical limit to aid magnetic field risk mitigation strategies.


Assuntos
Imageamento por Ressonância Magnética/efeitos adversos , Exposição Ocupacional/análise , Monitoramento de Radiação/métodos , Campos Eletromagnéticos/efeitos adversos , Humanos , Projetos Piloto
19.
Mutat Res ; 645(1-2): 39-43, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18804118

RESUMO

Magnetic resonance imaging is a diagnostic technique widely used in medicine and showing a growing impact in cardiology. Biological effects associated to magnetic resonance electromagnetic fields have received far little attention, but it cannot be ruled out that these fields can alter DNA structure. The present study aimed at to identify possible DNA damage induced by magnetic resonance scan in humans. Lymphocyte cultures from healthy subjects had been exposed into magnetic resonance device for different times and under different variable magnetic exposure in order to build dose-effect curves, using micronuclei induction as biological marker. Replicate cultures were also left for 24h at room temperature before stimulation, to verify possible damage recovery. Furthermore, micronuclei induction and recovery up to 120h have been also evaluated in circulating lymphocytes of individuals after cardiac scan. A dose-dependent increase of micronuclei frequency was observed in vitro. However after 24h, the frequency returns to control value when the exposure is within diagnostic dosage. After in vivo scan, a significant increase in micronuclei is found till 24h, after the frequencies slowly return to control value.


Assuntos
Cardiopatias/diagnóstico , Linfócitos/patologia , Imageamento por Ressonância Magnética/efeitos adversos , Micronúcleos com Defeito Cromossômico , Adulto , Idoso , Feminino , Humanos , Magnetismo , Masculino , Testes para Micronúcleos , Pessoa de Meia-Idade , Mutação
20.
Radiat Prot Dosimetry ; 182(4): 546-554, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30053260

RESUMO

Magnetic resonance imaging (MRI) is one of the most common sources of electromagnetic (EM) fields as a diagnostic technique widely used in medicine. MRI staff during the working day is constantly exposed to static and spatially heterogeneous magnetic field. Also, moving around the MRI room to perform their functions, workers are exposed to slowly time-varying magnetic fields that induce electrical currents and fields in the body. The development of new exposure assessment methodologies to collect exposure data at a personal level using simple everyday equipment is hence necessary, also in view of future epidemiological studies. This paper describes the design and testing of a novel device for assessing personal exposure to static and time-varying magnetic fields during daily clinical practice. The dosemeter will be also used to ensure effective training of technicians who will be instructed to avoid, where possible, risk behaviour in terms of high exposure.


Assuntos
Campos Eletromagnéticos , Imageamento por Ressonância Magnética/instrumentação , Exposição Ocupacional/análise , Monitoramento de Radiação/métodos , Radiometria/instrumentação , Desenho de Equipamento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA