Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36361990

RESUMO

The morphology of fibroblast-like synoviocytes (FLS) issued from the synovial fluid (SF) of patients suffering from osteoarthritis (OA), rheumatoid arthritis (RA), or from healthy subjects (H), as well as the ultrastructure and mechanical properties of the FLS-secreted extracellular vesicles (EV), were analyzed by confocal microscopy, transmission electron microscopy, atomic force microscopy, and tribological tests. EV released under healthy conditions were constituted of several lipid bilayers surrounding a viscous inner core. This "gel-in" vesicular structure ensured high mechanical resistance of single vesicles and good tribological properties of the lubricant. RA, and to a lesser extent OA, synovial vesicles had altered morphology, corresponding to a "gel-out" situation with vesicles surrounded by a viscous gel, poor mechanical resistance, and poor lubricating qualities. When subjected to inflammatory conditions, healthy cells developed phenotypes similar to that of RA samples, which reinforces the importance of inflammatory processes in the loss of lubricating properties of SF.


Assuntos
Artrite Reumatoide , Vesículas Extracelulares , Osteoartrite , Sinoviócitos , Humanos , Sinoviócitos/fisiologia , Membrana Sinovial , Células Cultivadas , Fibroblastos
2.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921088

RESUMO

Novel nanomedicines have been engineered to deliver molecules with therapeutic potentials, overcoming drawbacks such as poor solubility, toxicity or short half-life. Lipid-based carriers such as liposomes represent one of the most advanced classes of drug delivery systems. A Monomethyl Auristatin E (MMAE) warhead was grafted on a lipid derivative and integrated in fusogenic liposomes, following the model of antibody drug conjugates. By modulating the liposome composition, we designed a set of particles characterized by different membrane fluidities as a key parameter to obtain selective uptake from fibroblast or prostate tumor cells. Only the fluid liposomes made of palmitoyl-oleoyl-phosphatidylcholine and dioleoyl-phosphatidylethanolamine, integrating the MMAE-lipid derivative, showed an effect on prostate tumor PC-3 and LNCaP cell viability. On the other hand, they exhibited negligible effects on the fibroblast NIH-3T3 cells, which only interacted with rigid liposomes. Therefore, fluid liposomes grafted with MMAE represent an interesting example of drug carriers, as they can be easily engineered to promote liposome fusion with the target membrane and ensure drug selectivity.


Assuntos
Oligopeptídeos/farmacologia , Neoplasias da Próstata/patologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lipossomos , Masculino , Fluidez de Membrana/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Fatores de Tempo , Triglicerídeos/química
3.
Glycobiology ; 30(6): 396-406, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32100029

RESUMO

Mono- and digalactosyldiacylglycerol are essential galactolipids for the biogenesis of plastids and functioning of the photosynthetic machinery. In Arabidopsis, the first step of galactolipid synthesis is catalyzed by monogalactosyldiacylglycerol synthase 1 (MGD1), a monotopic protein located in the inner envelope membrane of chloroplasts, which transfers a galactose residue from UDP-galactose to diacylglycerol (DAG). MGD1 needs anionic lipids such as phosphatidylglycerol (PG) to be active, but the mechanism by which PG activates MGD1 is still unknown. Recent studies shed light on the catalytic mechanism of MGD1 and on the possible PG binding site. Particularly, Pro189 was identified as a potential residue implicated in PG binding and His155 as the putative catalytic residue. In the present study, using a multifaceted approach (Langmuir membrane models, atomic force microscopy, molecular dynamics; MD), we investigated the membrane binding properties of native MGD1 and mutants (P189A and H115A). We demonstrated that both residues are involved in PG binding, thus suggesting the existence of a PG-His catalytic dyad that should facilitate deprotonation of the nucleophile hydroxyl group of DAG acceptor. Interestingly, MD simulations showed that MGD1 induces a reorganization of lipids by attracting DAG molecules to create an optimal platform for binding.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Galactosiltransferases/metabolismo , Fosfatidilgliceróis/metabolismo , Adsorção , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Galactosiltransferases/química , Galactosiltransferases/genética , Lipídeos/química , Mutação
4.
PLoS Pathog ; 14(1): e1006814, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29320578

RESUMO

Mycolactone is a lipid-like endotoxin synthesized by an environmental human pathogen, Mycobacterium ulcerans, the causal agent of Buruli ulcer disease. Mycolactone has pleiotropic effects on fundamental cellular processes (cell adhesion, cell death and inflammation). Various cellular targets of mycolactone have been identified and a literature survey revealed that most of these targets are membrane receptors residing in ordered plasma membrane nanodomains, within which their functionalities can be modulated. We investigated the capacity of mycolactone to interact with membranes, to evaluate its effects on membrane lipid organization following its diffusion across the cell membrane. We used Langmuir monolayers as a cell membrane model. Experiments were carried out with a lipid composition chosen to be as similar as possible to that of the plasma membrane. Mycolactone, which has surfactant properties, with an apparent saturation concentration of 1 µM, interacted with the membrane at very low concentrations (60 nM). The interaction of mycolactone with the membrane was mediated by the presence of cholesterol and, like detergents, mycolactone reshaped the membrane. In its monomeric form, this toxin modifies lipid segregation in the monolayer, strongly affecting the formation of ordered microdomains. These findings suggest that mycolactone disturbs lipid organization in the biological membranes it crosses, with potential effects on cell functions and signaling pathways. Microdomain remodeling may therefore underlie molecular events, accounting for the ability of mycolactone to attack multiple targets and providing new insight into a single unifying mechanism underlying the pleiotropic effects of this molecule. This membrane remodeling may act in synergy with the other known effects of mycolactone on its intracellular targets, potentiating these effects.


Assuntos
Bicamadas Lipídicas , Macrolídeos/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Úlcera de Buruli/microbiologia , Adesão Celular/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Testes de Sensibilidade Microbiana , Mycobacterium ulcerans/química , Mycobacterium ulcerans/efeitos dos fármacos , Mycobacterium ulcerans/ultraestrutura , Tensoativos/farmacologia
5.
Langmuir ; 36(19): 5134-5144, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32338922

RESUMO

Lipid-based carriers such as liposomes represent one of the most advanced classes of drug delivery systems. Their clinical success relies on their composition, similar to that of the cell membrane. Their cellular specificity often relies on a ligand-receptor interaction. Although differences in the physicochemical properties of the cell membrane between tumor and nontumor cells have been reported, they are not systematically used for drug delivery purposes. In this report, a new approach was developed to ensure selective targeting based on physical compatibility between the target and the carrier membranes. By modulating the liposome composition and thus its membrane fluidity, we achieved selective targeting on four cancer cell lines of varying aggressiveness. Furthermore, using membrane-embedded and inner core-encapsulated fluorophores, we assessed the mechanism of this interaction to be based on the fusion of the liposome with the cell membranes. Membrane fluidity is therefore a major parameter to be considered when designing lipid drug carriers as a promising, lower cost alternative to current targeting strategies based on covalent grafting.


Assuntos
Fluidez de Membrana , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Lipídeos , Lipossomos , Neoplasias/tratamento farmacológico
6.
Arch Biochem Biophys ; 667: 14-21, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-30998909

RESUMO

Matrix vesicles (MVs) are a class of extracellular vesicles that initiate mineralization in cartilage, bone, and other vertebrate tissues by accumulating calcium ions (Ca2+) and inorganic phosphate (Pi) within their lumen and forming a nucleation core (NC). After further sequestration of Ca2+ and Pi, the NC transforms into crystalline complexes. Direct evidence of the existence of the NC and its maturation have been provided solely by analyses of dried samples. We isolated MVs from chicken embryo cartilage and used atomic force microscopy peak force quantitative nanomechanical property mapping (AFM-PFQNM) to measure the nanomechanical and morphological properties of individual MVs under both mineralizing (+Ca2+) and non-mineralizing (-Ca2+) fluid conditions. The elastic modulus of MVs significantly increased by 4-fold after incubation in mineralization buffer. From AFM mapping data, we inferred the morphological changes of MVs as mineralization progresses: prior to mineralization, a punctate feature, the NC, is present within MVs and this feature grows and stiffens during mineralization until it occupies most of the MV lumen. Dynamic light scattering showed a significant increase in hydrodynamic diameter and no change in the zeta potential of hydrated MVs after incubation with Ca2+. This validates that crystalline complexes, which are strongly negative relative to MVs, were forming within the lumen of MVs. These data were substantiated by transmission electron microscopy energy dispersive X-ray and Fourier transform infrared spectroscopic analyses of dried MVs, which provide evidence that the complexes increased in size, crystallinity, and Ca/P ratio within MVs during the mineralization process.


Assuntos
Biomineralização/fisiologia , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Microscopia de Força Atômica/métodos , Animais , Fenômenos Biomecânicos , Cartilagem/química , Cartilagem/metabolismo , Cartilagem/ultraestrutura , Embrião de Galinha , Vesículas Extracelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Analyst ; 143(9): 2165-2173, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29667660

RESUMO

A new prototype of a membrane protein biochip is presented in this article. This biochip was created by the combination of novel technologies of peptide-tethered bilayer lipid membrane (pep-tBLM) formation and solid support micropatterning. Pep-tBLMs integrating a membrane protein were obtained in the form of microarrays on a gold chip. The formation of the microspots was visualized in real-time by surface plasmon resonance imaging (SPRi) and the functionality of a GPCR (CXCR4), reinserted locally into microwells, was assessed by ligand binding studies. In brief, to achieve micropatterning, P19-4H, a 4 histidine-possessing peptide spacer, was spotted inside microwells obtained on polystyrene-coated gold, and Ni-chelating proteoliposomes were injected into the reaction chamber. Proteoliposome binding to the peptide was based on metal-chelate interaction. The peptide-tethered lipid bilayer was finally obtained by addition of a fusogenic peptide (AH peptide) to promote proteoliposome fusion. The CXCR4 pep-tBLM microarray was characterized by surface plasmon resonance imaging (SPRi) throughout the building-up process. This new generation of membrane protein biochip represents a promising method of developing a screening tool for drug discovery.


Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/química , Análise Serial de Proteínas , Receptores CXCR4/química , Ouro , Membranas , Proteolipídeos/química , Ressonância de Plasmônio de Superfície
8.
Angew Chem Int Ed Engl ; 57(1): 282-286, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29105911

RESUMO

Growth and division experiments on phospholipid boundaries were carried out using glass microsphere-supported phospholipid (DOPC) giant vesicles (GVs) fed with a fatty acid solution (oleic acid) at two distinct feeding rates. Both fast and slow feeding methods produced daughter GVs. Under slow feeding conditions the membrane growth process (evagination, buds, filaments) was observed in detail by fluorescence microscopy. The density difference between supported mother vesicles and newly formed daughter vesicles allowed their easy separation. Mass spectrometric analysis of the resulting mother and daughter GVs showed that the composition of both vesicle types was a mixture of original supported phospholipids and added fatty acids reflecting the total composition of amphiphiles after the feeding process. Thus, self-reproduction of phospholipid vesicles can take place under preservation of the lipid composition but different aggregate size.

9.
Biophys J ; 113(12): 2723-2735, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262365

RESUMO

Intrinsically disordered proteins (IDPs) lack stable secondary and tertiary structure under physiological conditions in the absence of their biological partners and thus exist as dynamic ensembles of interconverting conformers, often highly soluble in water. However, in some cases, IDPs such as the ones involved in neurodegenerative diseases can form protein aggregates and their aggregation process may be triggered by the interaction with membranes. Although the interfacial behavior of globular proteins has been extensively studied, experimental data on IDPs at the air/water (A/W) and water/lipid interfaces are scarce. We studied here the intrinsically disordered C-terminal domain of the Hendra virus nucleoprotein (NTAIL) and compared its interfacial properties to those of lysozyme that is taken as a model globular protein of similar molecular mass. Adsorption of NTAIL at the A/W interface was studied in the absence and presence of phospholipids using Langmuir films, polarization modulated-infrared reflection-absorption spectroscopy, and an automated drop tensiometer for interfacial tension and elastic modulus determination with oscillating bubbles. NTAIL showed a significant surface activity, with a higher adsorption capacity at the A/W interface and penetration into egg phosphatidylcholine monolayer compared to lysozyme. Whereas lysozyme remains folded upon compression of the protein layer at the A/W interface and shows a quasi-pure elastic behavior, NTAIL shows a much higher molecular area and forms a highly viscoelastic film with a high dilational modulus. To our knowledge, a new disorder-to-order transition is thus observed for the NTAIL protein that folds into an antiparallel ß-sheet at the A/W interface and presents strong intermolecular interactions.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Adsorção , Ar , Muramidase/química , Proteínas do Nucleocapsídeo , Fosfatidilcolinas/química , Conformação Proteica , Água/química
10.
Plant J ; 85(5): 622-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26935252

RESUMO

Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the major lipid components of photosynthetic membranes, and hence the most abundant lipids in the biosphere. They are essential for assembly and function of the photosynthetic apparatus. In Arabidopsis, the first step of galactolipid synthesis is catalyzed by MGDG synthase 1 (MGD1), which transfers a galactosyl residue from UDP-galactose to diacylglycerol (DAG). MGD1 is a monotopic protein that is embedded in the inner envelope membrane of chloroplasts. Once produced, MGDG is transferred to the outer envelope membrane, where DGDG synthesis occurs, and to thylakoids. Here we present two crystal structures of MGD1: one unliganded and one complexed with UDP. MGD1 has a long and flexible region (approximately 50 amino acids) that is required for DAG binding. The structures reveal critical features of the MGD1 catalytic mechanism and its membrane binding mode, tested on biomimetic Langmuir monolayers, giving insights into chloroplast membrane biogenesis. The structural plasticity of MGD1, ensuring very rapid capture and utilization of DAG, and its interaction with anionic lipids, possibly driving the construction of lipoproteic clusters, are consistent with the role of this enzyme, not only in expansion of the inner envelope membrane, but also in supplying MGDG to the outer envelope and nascent thylakoid membranes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Galactolipídeos/biossíntese , Galactosiltransferases/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Biocatálise , Vias Biossintéticas/genética , Domínio Catalítico , Cristalografia por Raios X , Diglicerídeos/química , Diglicerídeos/metabolismo , Eletroforese em Gel de Poliacrilamida , Galactose/química , Galactose/metabolismo , Galactosiltransferases/química , Galactosiltransferases/genética , Membranas Intracelulares/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Difosfato de Uridina/química , Difosfato de Uridina/metabolismo , Difração de Raios X
11.
Langmuir ; 33(39): 10385-10401, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28877444

RESUMO

Membrane proteins exhibiting extra- and intracellular domains require an adequate near-native lipid platform for their functional reconstitution. With this aim, we developed a new technology enabling the formation of a peptide-tethered bilayer lipid membrane (pep-tBLM), a lipid bilayer grafted onto peptide spacers, by way of a metal-chelate interaction. To this end, we designed an original peptide spacer derived from the natural α-laminin thiopeptide (P19) possessing a cysteine residue in the N-terminal extremity for grafting onto gold and a C-terminal extremity modified by four histidine residues (P19-4H). In the presence of nickel, the use of this anchor allowed us to bind liposomes of variable compositions containing a 2% molar ratio of a chelating lipid, 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] so-called DOGS-NTA, and to form the planar bilayer by triggering liposome fusion by an α-helical (AH) peptide derived from the N-terminus of the hepatitis C virus NS5A protein. The formation of pep-tBLMs was characterized by surface plasmon resonance imaging (SPRi), and their continuity, fluidity, and homogeneity were demonstrated by fluorescence recovery after photobleaching (FRAP), with a diffusion coefficient of 2.5 × 10-7 cm2/s, and atomic force microscopy (AFM). By using variable lipid compositions including phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol 4,5-bisphosphate (PIP2), sphingomyelin (SM), phosphatidic acid (PA), and cholesterol (Chol) in various ratios, we show that the membrane can be formed independently from the lipid composition. We made the most of this advantage to reincorporate a transmembrane protein in an adapted complex lipid composition to ensure its functional reinsertion. For this purpose, a cell-free expression system was used to produce proteoliposomes expressing the functional C-X-C motif chemokine receptor 4 (CXCR4), a seven-transmembrane protein belonging to the large superfamily of G-protein-coupled receptors (GPCRs). We succeeded in reinserting CXCR4 in pep-tBLMs formed on P19-4H by the fusion of tethered proteoliposomes. AFM and FRAP characterization allowed us to show that pep-tBLMs inserting CXCR4 remained fluid, homogeneous, and continuous. The value of the diffusion coefficient determined in the presence of reinserted CXCR4 was 2 × 10-7 cm2/s. Ligand binding assays using a synthetic CXCR4 antagonist, T22 ([Tyr5,12, Lys7]-polyphemusin II), revealed that CXCR4 can be reinserted in pep-tBLMs with functional folding and orientation. This new approach represents a method of choice for investigating membrane protein reincorporation and a promising way of creating a new generation of membrane biochips adapted for screening agonists or antagonists of transmembrane proteins.


Assuntos
Fosfolipídeos/química , Bicamadas Lipídicas , Fosfatidilcolinas , Receptores Acoplados a Proteínas G
12.
Org Biomol Chem ; 15(19): 4231-4240, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28466946

RESUMO

Giant lipid vesicles resemble compartments of biological cells, mimicking them in their dimension, membrane structure and partly in their membrane composition. The spontanenous appearance of closed membranes composed of bilayers of self-assembling amphiphiles was likely a prerequisite for Darwinian competitive behavior to set in at the molecular level. Such compartments should be dynamic in their membrane composition (evolvable), and sufficiently stable to harbor macromolecules (leak-free), yet semi-permeable for reactive small molecules to get across the membrane (stay away from chemical equilibrium). Here we describe bottom-up experiments simulating prebiotic environments that support the formation of simple amphiphilic molecules capable of self-assembling into vesicular objects on the micrometer scale. Long-chain alkyl phosphates, together with related amphiphilic compounds, were formed under simulated prebiotic phosphorylation conditions by using cyanamide, a recognized prebiotic chemical activator and a precursor for several compound classes. Crude dry material of the thus obtained prebiotic mixtures formed multilamellar giant vesicles once rehydrated at the appropriate pH and in the presence of plausibly prebiotic co-surfactants, as observed by optical microscopy. The size and the shape of lipid aggregates tentatively suggest that prebiotic lipid assemblies could encapsulate peptides or nucleic acids that could be formed under similar chemical prebiotic conditions. The formation of prebiotic amphiphiles was monitored by using TLC, IR, NMR and ESI-MS and UPLC-HRMS. In addition we provide a spectroscopic analysis of cyanamide under simulated prebiotic conditions in the presence of phosphate sources and spectroscopic analysis of O-phosphorylethanolamine as a plausible precursor for phosphoethanolamine lipids.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Prebióticos , Lipossomas Unilamelares/química , Cianamida/química , Ureia/química
13.
Org Biomol Chem ; 15(23): 5096, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28561123

RESUMO

Correction for 'Giant vesicles from rehydrated crude mixtures containing unexpected mixtures of amphiphiles formed under plausibly prebiotic conditions' by Michele Fiore et al., Org. Biomol. Chem., 2017, 15, 4231-4240.

14.
J Biol Chem ; 289(4): 2261-76, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324268

RESUMO

Degradation of damaged mitochondria by mitophagy is an essential process to ensure cell homeostasis. Because neurons, which have a high energy demand, are particularly dependent on the mitochondrial dynamics, mitophagy represents a key mechanism to ensure correct neuronal function. Collapsin response mediator proteins 5 (CRMP5) belongs to a family of cytosolic proteins involved in axon guidance and neurite outgrowth signaling during neural development. CRMP5, which is highly expressed during brain development, plays an important role in the regulation of neuronal polarity by inhibiting dendrite outgrowth at early developmental stages. Here, we demonstrated that CRMP5 was present in vivo in brain mitochondria and is targeted to the inner mitochondrial membrane. The mitochondrial localization of CRMP5 induced mitophagy. CRMP5 overexpression triggered a drastic change in mitochondrial morphology, increased the number of lysosomes and double membrane vesicles termed autophagosomes, and enhanced the occurrence of microtubule-associated protein 1 light chain 3 (LC3) at the mitochondrial level. Moreover, the lipidated form of LC3, LC3-II, which triggers autophagy by insertion into autophagosomes, enhanced mitophagy initiation. Lysosomal marker translocates at the mitochondrial level, suggesting autophagosome-lysosome fusion, and induced the reduction of mitochondrial content via lysosomal degradation. We show that during early developmental stages the strong expression of endogenous CRMP5, which inhibits dendrite growth, correlated with a decrease of mitochondrial content. In contrast, the knockdown or a decrease of CRMP5 expression at later stages enhanced mitochondrion numbers in cultured neurons, suggesting that CRMP5 modulated these numbers. Our study elucidates a novel regulatory mechanism that utilizes CRMP5-induced mitophagy to orchestrate proper dendrite outgrowth and neuronal function.


Assuntos
Amidoidrolases/metabolismo , Dendritos/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Amidoidrolases/genética , Animais , Células COS , Chlorocebus aethiops , Dendritos/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Hidrolases , Lisossomos/genética , Lisossomos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/genética , Fagossomos/genética , Fagossomos/patologia
15.
Biochim Biophys Acta ; 1838(10): 2698-707, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25019684

RESUMO

VIsinin-LIke Proteins (VILIPs) are a subfamily of the Neuronal Calcium Sensor (NCS) proteins, which possess both N-myristoylation and EF-hand motifs allowing for a putative 'calcium-myristoyl switch' regulation mechanism. It has previously been established that myristoyl conjugation increases the affinity of proteins for membranes, but, in many cases, a second feature such as a cluster of positively-charged residues is needed for stable membrane binding. The interaction of two members of this family, VILIP-1 and VILIP-3, with Langmuir monolayers as membrane models has been investigated in order to study the effects of both myristoylation and the highly basic region containing conserved poly-lysine residues on membrane association kinetics and binding properties. Results show that in the presence of calcium, N-myristoylation significantly increases the kinetic rate of VILIP adsorption to the membrane. Additionally, the proteins bind to negatively charged phospholipids independently of the conjugated myristate moiety. Besides the regulatory effect of calcium on the rate of binding presumably due to exposure of the myristoyl moiety ascribed to their putative 'calcium-myristoyl switch', VILIP-1 and -3 also engage specific interactions with biomimetic membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2). The presence of PIP2 increases the membrane association rates of both VILIPs. Taken together, these results show the major kinetic role of N-myristoylation for membrane binding, and highlight the critical role of specific phosphoinositide interactions for membrane association of members of the VILIP family.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Lipoilação , Membranas Artificiais , Neurocalcina/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Cálcio/química , Membrana Celular/química , Humanos , Neurocalcina/química , Fosfatos de Fosfatidilinositol/química
16.
FASEB J ; 28(7): 3114-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24692595

RESUMO

Mono- and digalactosyldiacylglycerol (MGDG and DGDG) are the most abundant lipids of photosynthetic membranes (thylakoids). In Arabidopsis green tissues, MGD1 is the main enzyme synthesizing MGDG. This monotopic enzyme is embedded in the inner envelope membrane of chloroplasts. DGDG synthesis occurs in the outer envelope membrane. Although the suborganellar localization of MGD1 has been determined, it is still not known how the lipid/glycolipid composition influences its binding to the membrane. The existence of a topological relationship between MGD1 and "embryonic" thylakoids is also unknown. To investigate MGD1 membrane binding, we used a Langmuir membrane model allowing the tuning of both lipid composition and packing. Surprisingly, MGD1 presents a high affinity to MGDG, its product, which maintains the enzyme bound to the membrane. This positive feedback is consistent with the low level of diacylglycerol, the substrate of MGD1, in chloroplast membranes. By contrast, MGD1 is excluded from membranes highly enriched in, or made of, pure DGDG. DGDG therefore exerts a retrocontrol, which is effective on the overall synthesis of galactolipids. Previously identified activators, phosphatidic acid and phosphatidylglycerol, also play a role on MGD1 membrane binding via electrostatic interactions, compensating the exclusion triggered by DGDG. The opposite effects of MGDG and DGDG suggest a role of these lipids on the localization of MGD1 in specific domains. Consistently, MGDG induces the self-organization of MGD1 into elongated and reticulated nanostructures scaffolding the chloroplast membrane.-Sarkis, J., Rocha, J., Maniti, O., Jouhet, J., Vié, V., Block, M. A., Breton, C., Maréchal, E., Girard-Egrot, A. The influence of lipids on MGD1 membrane binding highlights novel mechanisms for galactolipid biosynthesis regulation in chloroplasts.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Galactolipídeos/biossíntese , Galactosiltransferases/metabolismo , Membranas Intracelulares/metabolismo , Lipídeos de Membrana/metabolismo , Arabidopsis/metabolismo , Diglicerídeos/metabolismo , Galactolipídeos/metabolismo , Modelos Biológicos
17.
J Liposome Res ; 25(2): 122-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25222643

RESUMO

Conventional liposomes have a short life-time in blood, unless they are protected by a polymer envelope, most often polyethylene glycol. However, these stabilizing polymers frequently interfere with cellular uptake, impede liposome-membrane fusion and inhibit escape of liposome content from endosomes. To overcome such drawbacks, polymer-based systems as carriers for liposomes are currently developed. Conforming to this approach, we propose a new and convenient method for embedding small size liposomes, 30-100 nm, inside porous calcium carbonate microparticles. These microparticles served as templates for deposition of various polyelectrolytes to form a protective shell. The carbonate particles were then dissolved to yield hollow polyelectrolyte microcapsules. The main advantage of using this method for liposome encapsulation is that carbonate particles can serve as a sacrificial template for deposition of virtually any polyelectrolyte. By carefully choosing the shell composition, bioavailability of the liposomes and of the encapsulated drug can be modulated to respond to biological requirements and to improve drug delivery to the cytoplasm and avoid endosomal escape.


Assuntos
Cápsulas/química , Portadores de Fármacos/química , Eletrólitos/química , Lipossomos/química , Polímeros/química , Carbonato de Cálcio/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
18.
Bioconjug Chem ; 25(4): 773-87, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24528385

RESUMO

A family of neutral fluorescent probes was developed, mimicking the overall structure of natural glycolipids in order to optimize their membrane affinity. Nonreducing commercially available di- or trisaccharidic structures were connected to a push-pull chromophore based on dicyanoisophorone electron-accepting group, which proved to fluoresce in the red region with a very large Stokes shift. This straightforward synthetic strategy brought structural variations to a series of probes, which were studied for their optical, biophysical, and biological properties. The insertion properties of the different probes into membranes were evaluated on a model system using the Langmuir monolayer balance technique. Confocal fluorescence microscopy performed on muscle cells showed completely different localizations and loading efficiencies depending on the structure of the probes. When compared to the commercially available ANEPPS, a family of commonly used membrane imaging dyes, the most efficient probes showed a similar brightness, but a sharper pattern was observed. According to this study, compounds bearing one chromophore, a limited size of the carbohydrate moiety, and an overall rod-like shape gave the best results.


Assuntos
Membrana Celular/metabolismo , Corantes Fluorescentes/química , Glicoconjugados/química , Músculo Esquelético/citologia , Imagem Óptica , Animais , Cor , Corantes Fluorescentes/síntese química , Glicoconjugados/síntese química , Masculino , Camundongos , Camundongos Endogâmicos , Microscopia Confocal , Estrutura Molecular
19.
Pharmaceutics ; 15(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38140081

RESUMO

Nanomedicines engineered to deliver molecules with therapeutic potentials, overcoming drawbacks such as poor solubility, toxicity or a short half-life, are targeted towards their cellular destination either passively or through various elements of cell membranes. The differences in the physicochemical properties of the cell membrane between tumor and nontumor cells have been reported, but they are not systematically used for drug delivery purposes. Thus, in this study, a new approach based on a match between the liposome compositions, i.e., membrane fluidity, to selectively interact with the targeted cell membrane was used. Lipid-based carriers of two different fluidities were designed and used to deliver 4(RS)-4-F4t-Neuroprostane (F4t-NeuroP), a potential antitumor molecule derived from docosahexaenoic acid (DHA). Based on its hydrophobic character, F4t-NeuroP was added to the lipid mixture prior to liposome formation, a protocol that yielded over 80% encapsulation efficiency in both rigid and fluid liposomes. The presence of the active molecule did not modify the liposome size but increased the liposome negative charge and the liposome membrane fluidity, which suggested that the active molecule was accommodated in the lipid membrane. F4t-NeuroP integration in liposomes with a fluid character allowed for the selective targeting of the metastatic prostate cell line PC-3 vs. fibroblast controls. A significant decrease in viability (40%) was observed for the PC-3 cancer line in the presence of F4t-NeuroP fluid liposomes, whereas rigid F4t-NeuroP liposomes did not alter the PC-3 cell viability. These findings demonstrate that liposomes encapsulating F4t-NeuroP or other related molecules may be an interesting model of drug carriers based on membrane fluidity.

20.
Anal Chem ; 82(6): 2401-4, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20163148

RESUMO

The effect of the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate ([Emim][EtSO(4)]) on the copper-catalyzed luminol chemiluminescence (CL) is reported. A drastic light emission enhancement is observed, related to a strong interaction between Cu(2+) and the imidazolium ring. In these conditions, the CL reaction was able to produce light efficiently at pH as low as 6.5 (amplification factor: Intensity(+IL)/Intensity(-IL) = 2900). Interesting effects of [Emim][EtSO(4)] on the enzyme glucose oxidase activity were also evidenced, and advantages were taken from this enhancement to perform sensitive chemiluminescent glucose detection (LOD = 4 microM) at pH 8.0.


Assuntos
Cobre/química , Glucose/análise , Imidazóis/química , Medições Luminescentes/métodos , Aspergillus niger/enzimologia , Catálise , Glucose Oxidase/metabolismo , Peróxido de Hidrogênio/análise , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA