Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(9): 244, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561190

RESUMO

Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of cancer death. Despite enormous progress in its management, both from the therapeutic and early diagnosis viewpoints, still around 700,000 patients succumb to the disease each year, worldwide. Late recurrency is the major problem in BC, with many patients developing distant metastases several years after the successful eradication of the primary tumor. This is linked to the phenomenon of metastatic dormancy, a still mysterious trait of the natural history of BC, and of several other types of cancer, by which metastatic cells remain dormant for long periods of time before becoming reactivated to initiate the clinical metastatic disease. In recent years, it has become clear that cancers are best understood if studied as ecosystems in which the impact of non-cancer-cell-autonomous events-dependent on complex interaction between the cancer and its environment, both local and systemic-plays a paramount role, probably as significant as the cell-autonomous alterations occurring in the cancer cell. In adopting this perspective, a metabolic vision of the cancer ecosystem is bound to improve our understanding of the natural history of cancer, across space and time. In BC, many metabolic pathways are coopted into the cancer ecosystem, to serve the anabolic and energy demands of the cancer. Their study is shedding new light on the most critical aspect of BC management, of metastatic dissemination, and that of the related phenomenon of dormancy and fostering the application of the knowledge to the development of metabolic therapies.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Ecossistema
2.
Nature ; 552(7683): 116-120, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29186113

RESUMO

Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression. Cancers deficient in MMR frequently show favourable prognosis and indolent progression. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts in vitro and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Reparo de Erro de Pareamento de DNA/genética , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/patologia , Animais , Anticorpos Antineoplásicos/imunologia , Anticorpos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína 1 Homóloga a MutL/deficiência , Proteína 1 Homóloga a MutL/genética , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Evasão Tumoral/genética , Evasão Tumoral/imunologia
3.
Am J Pathol ; 188(5): 1276-1288, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29458011

RESUMO

Tumor invasion is a critical first step in the organismic dissemination of cancer cells and the formation of metastasis in distant organs, the most important prognostic factor and the actual cause of death in most of the cancer patients. We report herein that the cell surface protein podoplanin (PDPN), a potent inducer of cancer cell invasion, is conspicuously expressed by the invasive front of squamous cell carcinomas (SCCs) of the cervix in patients and in the transgenic human papillomavirus/estrogen mouse model of cervical cancer. Laser capture microscopy combined with gene expression profiling reveals that the expression of interferon-responsive genes is up-regulated in PDPN-expressing cells at the tumor invasive front, which are exposed to CD45-positive inflammatory cells. Indeed, PDPN expression can be induced in cultured SCC cell lines by single or combined treatments with interferon-γ, transforming growth factor-ß, and/or tumor necrosis factor-α. Notably, shRNA-mediated ablation of either PDPN or STAT1 in A431 SCC cells repressed cancer cell invasion on s.c. transplantation into immunodeficient mice. The results highlight the induction of tumor cell invasion by the inflammatory cytokine-stimulated expression of PDPN in the outermost cell layers of cervical SCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Citocinas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Invasividade Neoplásica/genética , Neoplasias do Colo do Útero/metabolismo , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Invasividade Neoplásica/patologia , Transcriptoma , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
4.
Mol Ther ; 26(8): 2008-2018, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29929788

RESUMO

We previously demonstrated that miR-214 is upregulated in malignant melanomas and triple-negative breast tumors and promotes metastatic dissemination by affecting a complex pathway including the anti-metastatic miR-148b. Importantly, tumor dissemination could be reduced by blocking miR-214 function or increasing miR-148b expression or by simultaneous interventions. Based on this evidence, with the intent to explore the role of miR-214 as a target for therapy, we evaluated the capability of new chemically modified anti-miR-214, R97/R98, to inhibit miR-214 coordinated metastatic traits. Relevantly, when melanoma or breast cancer cells were transfected with R97/R98, anti-miR-214 reduced miR-214 expression and impaired transendothelial migration were observed. Noteworthy, when the same cells were injected in the tail vein of mice, cell extravasation and metastatic nodule formation in lungs were strongly reduced. Thus, suggesting that R97/R98 anti-miR-214 oligonucleotides were able to inhibit tumor cell escaping through the endothelium. More importantly, when R97/R98 anti-miR-214 compounds were systemically delivered to mice carrying melanomas or breast or neuroendocrine pancreatic cancers, a reduced number of circulating tumor cells and lung or lymph node metastasis formation were detected. Similar results were also obtained when AAV8-miR-214 sponges were used in neuroendocrine pancreatic tumors. Based on this evidence, we propose miR-214 as a promising target for anti-metastatic therapies.


Assuntos
Antagomirs/administração & dosagem , MicroRNAs/genética , Neoplasias/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos , Animais , Antagomirs/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Camundongos , MicroRNAs/antagonistas & inibidores , Metástase Neoplásica/tratamento farmacológico , Neoplasias/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Arterioscler Thromb Vasc Biol ; 37(9): 1710-1721, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28729362

RESUMO

OBJECTIVE: Molecular pathways governing blood vessel patterning are vital to vertebrate development. Because of their ability to counteract proangiogenic factors, antiangiogenic secreted Sema3 (class 3 semaphorins) control embryonic vascular morphogenesis. However, if and how Sema3 may play a role in the control of extraembryonic vascular development is presently unknown. APPROACH AND RESULTS: By characterizing genetically modified mice, here, we show that surprisingly Sema3F acts instead as a selective extraembryonic, but not intraembryonic proangiogenic cue. Both in vivo and in vitro, in visceral yolk sac epithelial cells, Sema3F signals to inhibit the phosphorylation-dependent degradation of Myc, a transcription factor that drives the expression of proangiogenic genes, such as the microRNA cluster 17/92. In Sema3f-null yolk sacs, the transcription of Myc-regulated microRNA 17/92 cluster members is impaired, and the synthesis of Myc and microRNA 17/92 foremost antiangiogenic target Thbs1 (thrombospondin 1) is increased, whereas Vegf (vascular endothelial growth factor) signaling is inhibited in yolk sac endothelial cells. Consistently, exogenous recombinant Sema3F inhibits the phosphorylation-dependent degradation of Myc and the synthesis of Thbs1 in mouse F9 teratocarcinoma stem cells that were in vitro differentiated in visceral yolk sac epithelial cells. Sema3f-/- mice placentas are also highly anemic and abnormally vascularized. CONCLUSIONS: Sema3F functions as an unconventional Sema3 that promotes extraembryonic angiogenesis by inhibiting the Myc-regulated synthesis of Thbs1 in visceral yolk sac epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica , Proteínas do Tecido Nervoso/metabolismo , Placenta/irrigação sanguínea , Saco Vitelino/irrigação sanguínea , Animais , Linhagem Celular Tumoral , Células-Tronco de Carcinoma Embrionário/metabolismo , Células Endoteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Idade Gestacional , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fenótipo , Fosforilação , Gravidez , Proteólise , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Trombospondina 1/genética , Trombospondina 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Mol Cell Proteomics ; 14(3): 621-34, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25573745

RESUMO

Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability.


Assuntos
Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Metaboloma , Modelos Biológicos , Proteômica/métodos , Trifosfato de Adenosina/metabolismo , Animais , Células Endoteliais/citologia , Compostos de Epóxi/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Camundongos , Oxirredução , Consumo de Oxigênio , Permeabilidade
7.
Mol Cell Proteomics ; 12(12): 3599-611, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23979707

RESUMO

Proteomics has been successfully used for cell culture on dishes, but more complex cellular systems have proven to be challenging and so far poorly approached with proteomics. Because of the complexity of the angiogenic program, we still do not have a complete understanding of the molecular mechanisms involved in this process, and there have been no in depth quantitative proteomic studies. Plating endothelial cells on matrigel recapitulates aspects of vessel growth, and here we investigate this mechanism by using a spike-in SILAC quantitative proteomic approach. By comparing proteomic changes in primary human endothelial cells morphogenesis on matrigel to general adhesion mechanisms in cells spreading on culture dish, we pinpoint pathways and proteins modulated by endothelial cells. The cell-extracellular matrix adhesion proteome depends on the adhesion substrate, and a detailed proteomic profile of the extracellular matrix secreted by endothelial cells identified CLEC14A as a matrix component, which binds to MMRN2. We verify deregulated levels of these proteins during tumor angiogenesis in models of multistage carcinogenesis. This is the most in depth quantitative proteomic study of endothelial cell morphogenesis, which shows the potential of applying high accuracy quantitative proteomics to in vitro models of vessel growth to shed new light on mechanisms that accompany pathological angiogenesis. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000359.


Assuntos
Antígenos de Superfície/genética , Biomarcadores Tumorais/genética , Moléculas de Adesão Celular/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lectinas Tipo C/genética , Glicoproteínas de Membrana/genética , Animais , Antígenos de Superfície/metabolismo , Biomarcadores Tumorais/metabolismo , Isótopos de Carbono , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Colágeno/química , Combinação de Medicamentos , Matriz Extracelular/química , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Marcação por Isótopo , Laminina/química , Lectinas Tipo C/metabolismo , Espectrometria de Massas , Glicoproteínas de Membrana/metabolismo , Camundongos , Morfogênese/genética , Neovascularização Patológica , Cultura Primária de Células , Ligação Proteica , Proteoglicanas/química , Proteômica , Transdução de Sinais
8.
J Immunol ; 188(8): 4081-92, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22442441

RESUMO

The axon guidance cues semaphorins (Semas) and their receptors plexins have been shown to regulate both physiological and pathological angiogenesis. Sema4A plays an important role in the immune system by inducing T cell activation, but to date, the role of Sema4A in regulating the function of macrophages during the angiogenic and inflammatory processes remains unclear. In this study, we show that macrophage activation by TLR ligands LPS and polyinosinic-polycytidylic acid induced a time-dependent increase of Sema4A and its receptors PlexinB2 and PlexinD1. Moreover, in a thioglycollate-induced peritonitis mouse model, Sema4A was detected in circulating Ly6C(high) inflammatory monocytes and peritoneal macrophages. Acting via PlexinD1, exogenous Sema4A strongly increased macrophage migration. Of note, Sema4A-activated PlexinD1 enhanced the expression of vascular endothelial growth factor-A, but not of inflammatory chemokines. Sema4A-stimulated macrophages were able to activate vascular endothelial growth factor receptor-2 and the PI3K/serine/threonine kinase Akt pathway in endothelial cells and to sustain their migration and in vivo angiogenesis. Remarkably, in an in vivo cardiac ischemia/reperfusion mouse model, Sema4A was highly expressed in macrophages recruited at the injured area. We conclude that Sema4A activates a specialized and restricted genetic program in macrophages able to sustain angiogenesis and participates in their recruitment and activation in inflammatory injuries.


Assuntos
Macrófagos Peritoneais/imunologia , Neovascularização Fisiológica , Semaforinas/fisiologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Animais , Movimento Celular , Quimiocinas/biossíntese , Quimiocinas/imunologia , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos , Macrófagos Peritoneais/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Miocárdio/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Peritonite/imunologia , Peritonite/metabolismo , Peritonite/patologia , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Semaforinas/farmacologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Exp Cell Res ; 319(9): 1306-16, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23422037

RESUMO

Semaphorins (Semas) are a large family of traditional axon guidance molecules. Through interactions with their receptors, Plexins and Neuropilins, Semas play critical roles in a continuously growing list of diverse biological systems. In this review, we focus on their function in regulating vascular development. In addition, over the past few years a number of findings have shown the crucial role that Semas and their receptors play in the regulation of cancer progression and tumor angiogenesis. In particular, Semas control tumor progression by directly influencing the behavior of cancer cells or, indirectly, by modulating angiogenesis and the function of other cell types in the tumor microenvironment (i.e., inflammatory cells and fibroblasts). Some Semas can activate or inhibit tumor progression and angiogenesis, while others may have the opposite effect depending on specific post-translational modifications. Here we will also discuss the diverse biological effects of Semas and their receptor complexes on cancer progression as well as their impact on the tumor microenvironment.


Assuntos
Neoplasias/irrigação sanguínea , Neovascularização Patológica/metabolismo , Semaforinas/fisiologia , Animais , Moléculas de Adesão Celular/metabolismo , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Neovascularização Fisiológica , Proteínas do Tecido Nervoso/metabolismo , Neuropilinas/metabolismo , Transdução de Sinais , Microambiente Tumoral
10.
Cancer Immunol Res ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874583

RESUMO

Semaphorin-Plexin signaling plays a major role in the tumor microenvironment (TME). In particular, Semaphorin 4D (SEMA4D) has been shown to promote tumor growth and metastasis; however, the role of its high-affinity receptor Plexin-B1 (PLXNB1), which is expressed in the TME, is poorly understood. In this study, we directly targeted PLXNB1 in the TME of triple-negative murine breast carcinoma to elucidate its relevance in cancer progression. We found that primary tumor growth, and metastatic dissemination were strongly reduced in PLXNB1-deficient mice, which showed longer survival. PLXNB1-loss in the TME induced a switch in the polarization of tumor-associated macrophages (TAMs) towards a pro-inflammatory M1 phenotype and enhanced the infiltration of CD8+ T lymphocytes both in primary tumors and in distant metastases. Moreover, PLXNB1-deficiency promoted a shift in the Th1/Th2 balance of the T-cell population and an antitumor gene signature, with the up-regulation of Icos, Perforin-1, Stat3 and Ccl5 in tumor infiltrating lymphocytes (TILs). We thus tested the translational relevance of TME re-programming driven by PLXNB1 inactivation for responsiveness to immunotherapy. Indeed, in the absence of PLXNB1, the efficacy of anti-PD-1 blockade was strongly enhanced, efficiently reducing tumor growth and distant metastasis. Consistent with this, pharmacological PLXNB1 blockade by systemic treatment with a specific inhibitor significantly hampered breast cancer growth and enhanced the antitumor activity of the anti-PD1 treatment in a preclinical model. Altogether, these data indicate that PLXNB1 signaling controls the antitumor immune response in the TME and highlight this receptor as a promising immune therapeutic target for metastatic breast cancers.

11.
Trends Mol Med ; 29(10): 817-829, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598000

RESUMO

Pancreatic cancer is a major cause of demise worldwide. Although key associated genetic changes have been discovered, disease progression is sustained by pathogenic mechanisms that are poorly understood at the molecular level. In particular, the tissue microenvironment of pancreatic adenocarcinoma (PDAC) is usually characterized by high stromal content, scarce recruitment of immune cells, and the presence of neuronal fibers. Semaphorins and their receptors, plexins and neuropilins, comprise a wide family of regulatory signals that control neurons, endothelial and immune cells, embryo development, and normal tissue homeostasis, as well as the microenvironment of human tumors. We focus on the role of these molecular signals in pancreatic cancer progression, as revealed by experimental research and clinical studies, including novel approaches for cancer treatment.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Semaforinas , Humanos , Neuropilinas , Microambiente Tumoral , Neoplasias Pancreáticas
12.
EMBO Mol Med ; 15(3): e16104, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722641

RESUMO

The genetic changes sustaining the development of cancers of unknown primary (CUP) remain elusive. The whole-exome genomic profiling of 14 rigorously selected CUP samples did not reveal specific recurring mutation in known driver genes. However, by comparing the mutational landscape of CUPs with that of most other human tumor types, it emerged a consistent enrichment of changes in genes belonging to the axon guidance KEGG pathway. In particular, G842C mutation of PlexinB2 (PlxnB2) was predicted to be activating. Indeed, knocking down the mutated, but not the wild-type, PlxnB2 in CUP stem cells resulted in the impairment of self-renewal and proliferation in culture, as well as tumorigenic capacity in mice. Conversely, the genetic transfer of G842C-PlxnB2 was sufficient to promote CUP stem cell proliferation and tumorigenesis in mice. Notably, G842C-PlxnB2 expression in CUP cells was associated with basal EGFR phosphorylation, and EGFR blockade impaired the viability of CUP cells reliant on the mutated receptor. Moreover, the mutated PlxnB2 elicited CUP cell invasiveness, blocked by EGFR inhibitor treatment. In sum, we found that a novel activating mutation of the axon guidance gene PLXNB2 sustains proliferative autonomy and confers invasive properties to stem cells isolated from cancers of unknown primary, in EGFR-dependent manner.


Assuntos
Neoplasias Primárias Desconhecidas , Células-Tronco Neoplásicas , Proteínas do Tecido Nervoso , Animais , Humanos , Camundongos , Orientação de Axônios , Receptores ErbB/genética , Mutação , Recidiva Local de Neoplasia , Neoplasias Primárias Desconhecidas/genética , Proteínas do Tecido Nervoso/genética , Células-Tronco Neoplásicas/patologia
13.
Angiogenesis ; 15(4): 713-25, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22797886

RESUMO

Innate immunity may activate paracrine circuits able to entail vascular system in the onset and progression of several chronic degenerative diseases. In particular, interleukin (IL)-12 triggers a genetic program in lymphomononuclear cells characterized by the production of interferon-γ and specific chemokines resulting in an angiostatic activity. The aim of this study is to identify molecules involved in the regulation of cell cycle in endothelial cells co-cultured with IL-12-stimulated lymphomonuclear cells. By using a transwell mediated co-culture system we demonstrated that IL-12-stimulated lymphomonuclear cells induce an arrest of endothelial cells cycle in G1, which is mainly mediated by the up-regulation of p21(Cip1/Waf1), an inhibitor of cyclin kinases. This effect requires the activation of STAT1, PKCδ and p38 MAPK, while p53 is ineffective. In accordance, siRNA-dependent silencing of these molecules in endothelial cells inhibited the increase of p21(Cip1/Waf1) and the modification in cell cycle promoted by IL-12-stimulated lymphomonuclear cells. These results indicate that the angiostatic action of IL-12-stimulated lymphomononuclear cells may lie in the capability to arrest endothelial cells in G1 phase through a mechanisms mainly based on the specific up-regulation of p21(Cip1/Waf1) induced by the combined activity of STAT1, PKCδ and p38 MAPK.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Fase G1 , Imunidade Inata , Interleucina-12/fisiologia , Fase de Repouso do Ciclo Celular , Técnicas de Cocultura , Humanos , RNA Interferente Pequeno
14.
Cancer Cell ; 4(5): 383-91, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14667505

RESUMO

Phage display was used to identify homing peptides for blood vessels in a mouse model of HPV16-induced epidermal carcinogenesis. One peptide, CSRPRRSEC, recognized the neovasculature in dysplastic skin but not in carcinomas. Two other peptides, with the sequences CGKRK and CDTRL, preferentially homed to neovasculature in tumors and, to a lesser extent, premalignant dysplasias. The peptides did not home to vessels in normal skin, other normal organs, or the stages in pancreatic islet carcinogenesis in another mouse model. The CGKRK peptide may recognize heparan sulfates in tumor vessels. The dysplasia-homing peptide is identical to a loop in kallikrein-9 and may bind a kallikrein inhibitor or substrate. Thus, characteristics of the angiogenic vasculature distinguish premalignant and malignant stages of skin tumorigenesis.


Assuntos
Vasos Sanguíneos/metabolismo , Carcinoma de Células Escamosas/irrigação sanguínea , Heparitina Sulfato/metabolismo , Calicreínas/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/genética , Peptídeos/genética , Pele/metabolismo , Animais , Vasos Sanguíneos/fisiopatologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Displasia Ectodérmica/metabolismo , Displasia Ectodérmica/fisiopatologia , Imuno-Histoquímica , Camundongos , Estadiamento de Neoplasias , Biblioteca de Peptídeos , Peptídeos/metabolismo , Pele/fisiopatologia
15.
Cancer Cell ; 5(5): 443-53, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15144952

RESUMO

Tumors develop through successive stages characterized by changes in gene expression and protein function. Gene expression profiling of pancreatic islet tumors in a mouse model of cancer revealed upregulation of cathepsin cysteine proteases. Cathepsin activity was assessed using chemical probes allowing biochemical and in vivo imaging, revealing increased activity associated with the angiogenic vasculature and invasive fronts of carcinomas, and differential expression in immune, endothelial, and cancer cells. A broad-spectrum cysteine cathepsin inhibitor was used to pharmacologically knock out cathepsin function at different stages of tumorigenesis, impairing angiogenic switching in progenitor lesions, as well as tumor growth, vascularity, and invasiveness. Cysteine cathepsins are also upregulated during HPV16-induced cervical carcinogenesis, further encouraging consideration of this protease family as a therapeutic target in human cancers.


Assuntos
Catepsinas/metabolismo , Neovascularização Patológica/enzimologia , Neovascularização Patológica/metabolismo , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/patologia , Animais , Carcinoma de Células das Ilhotas Pancreáticas/irrigação sanguínea , Carcinoma de Células das Ilhotas Pancreáticas/patologia , Catepsinas/antagonistas & inibidores , Transformação Celular Neoplásica , Inibidores de Cisteína Proteinase/farmacologia , Feminino , Perfilação da Expressão Gênica , Humanos , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Invasividade Neoplásica , Estadiamento de Neoplasias , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Oncogênicas Virais/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia
16.
Nat Commun ; 13(1): 4188, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858913

RESUMO

The formation of a functional blood vessel network relies on the ability of endothelial cells (ECs) to dynamically rearrange their adhesive contacts in response to blood flow and guidance cues, such as vascular endothelial growth factor-A (VEGF-A) and class 3 semaphorins (SEMA3s). Neuropilin 1 (NRP1) is essential for blood vessel development, independently of its ligands VEGF-A and SEMA3, through poorly understood mechanisms. Grounding on unbiased proteomic analysis, we report here that NRP1 acts as an endocytic chaperone primarily for adhesion receptors on the surface of unstimulated ECs. NRP1 localizes at adherens junctions (AJs) where, interacting with VE-cadherin, promotes its basal internalization-dependent turnover and favors vascular permeability initiated by histamine in both cultured ECs and mice. We identify a splice variant of tryptophanyl-tRNA synthetase (mini-WARS) as an unconventionally secreted extracellular inhibitory ligand of NRP1 that, by stabilizing it at the AJs, slows down both VE-cadherin turnover and histamine-elicited endothelial leakage. Thus, our work shows a role for NRP1 as a major regulator of AJs plasticity and reveals how mini-WARS acts as a physiological NRP1 inhibitory ligand in the control of VE-cadherin endocytic turnover and vascular permeability.


Assuntos
Neuropilina-1 , Triptofano-tRNA Ligase , Junções Aderentes/metabolismo , Animais , Antígenos CD , Caderinas/genética , Permeabilidade Capilar , Células Endoteliais/metabolismo , Histamina , Ligantes , Camundongos , Neuropilina-1/genética , Neuropilina-1/metabolismo , Proteômica , Triptofano-tRNA Ligase/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Cancers (Basel) ; 14(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077801

RESUMO

Background: The pancreatic ductal adenocarcinoma (PDAC) microenvironment is highly fibrotic and hypoxic, with poor immune cell infiltration. Recently, we showed that nucleolin (NCL) inhibition normalizes tumour vessels and impairs PDAC growth. Methods: Immunocompetent mouse models of PDAC were treated by the pseudopeptide N6L, which selectively inhibits NCL. Tumour-infiltrating immune cells and changes in the tumour microenvironment were analysed. Results: N6L reduced the proportion of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and increased tumour-infiltrated T lymphocytes (TILs) with an activated phenotype. Low-dose anti-VEGFR2 treatment normalized PDAC vessels but did not modulate the immune suppressive microenvironment. RNAseq analysis of N6L-treated PDAC tumours revealed a reduction of cancer-associated fibroblast (CAF) expansion in vivo and in vitro. Notably, N6L treatment decreased IL-6 levels both in tumour tissues and in serum. Treating mPDAC by an antibody blocking IL-6 reduced the proportion of Tregs and MDSCs and increased the amount of TILs, thus mimicking the effects of N6L. Conclusions: These results demonstrate that NCL inhibition blocks the amplification of lymphoid and myeloid immunosuppressive cells and promotes T cell activation in PDAC through a new mechanism of action dependent on the direct inhibition of the tumoral stroma.

19.
Cancer Drug Resist ; 4(1): 192-207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35582009

RESUMO

Aim: Resistance to chemotherapy is a major limiting factor that hamper the effectiveness of anticancer therapies. Doxorubicin is an antineoplastic agent used in the treatment of a wide range of cancers. However, it presents several limitations such as dose-dependent cardiotoxicity, lack of selectivity for tumor cells, and induced cell resistance. Nanotechnology represents a promising strategy to avoid these drawbacks. In this work, new albumin-based nanoparticles were formulated for the intracellular delivery of doxorubicin with the aim to overcome cancer drug resistance. Methods: Glycol chitosan-coated and uncoated albumin nanoparticles were prepared with a tuned coacervation method. The nanoformulations were in vitro characterized evaluating the physicochemical parameters, morphology, and in vitro release kinetics. Biological assays were performed on A2780res and EMT6 cells from human ovarian carcinoma and mouse mammary cell lines resistant for doxorubicin, respectively. Results: Cell viability assays showed that nanoparticles have higher cytotoxicity than the free drug. Moreover, at low concentrations, both doxorubicin-loaded nanoparticles inhibited the cell colony formation in a greater extent than drug solution. In addition, the cell uptake of the different formulations was investigated by confocal microscopy and by the HPLC determination of doxorubicin intracellular accumulation. The nanoparticles were rapidly internalized in greater extent compared to the free drug. Conclusion: Based on these results, doxorubicin-loaded albumin nanoparticles might represent a novel platform to overcome the mechanism of drug resistance in cancer cell lines and improve the drug efficacy.

20.
J Med Chem ; 64(9): 5404-5428, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33844533

RESUMO

The connection with acute myelogenous leukemia (AML) of dihydroorotate dehydrogenase (hDHODH), a key enzyme in pyrimidine biosynthesis, has attracted significant interest from pharma as a possible AML therapeutic target. We recently discovered compound 1, a potent hDHODH inhibitor (IC50 = 1.2 nM), able to induce myeloid differentiation in AML cell lines (THP1) in the low nM range (EC50 = 32.8 nM) superior to brequinar's phase I/II clinical trial (EC50 = 265 nM). Herein, we investigate the 1 drug-like properties observing good metabolic stability and no toxic profile when administered at doses of 10 and 25 mg/kg every 3 days for 5 weeks (Balb/c mice). Moreover, in order to identify a backup compound, we investigate the SAR of this class of compounds. Inside the series, 17 is characterized by higher potency in inducing myeloid differentiation (EC50 = 17.3 nM), strong proapoptotic properties (EC50 = 20.2 nM), and low cytotoxicity toward non-AML cells (EC30(Jurkat) > 100 µM).


Assuntos
Compostos de Bifenilo/química , Inibidores Enzimáticos/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pirazóis/química , Piridinas/química , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Di-Hidro-Orotato Desidrogenase , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Meia-Vida , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Pirazóis/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Piridinas/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA