Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(2): 604-612, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36724373

RESUMO

Three-dimensional cell culture in engineered hydrogels is increasingly used in tissue engineering and regenerative medicine. The transfer of nutrients, gases, and waste materials through these hydrogels is of utmost importance for cell viability and response, yet the translation of diffusion coefficients into practical guidelines is not well established. Here, we combined mathematical modeling, fluorescent recovery after photobleaching, and hydrogel diffusion experiments on cell culture inserts to provide a multiscale practical approach for diffusion. We observed a dampening effect of the hydrogel that slowed the response to concentration changes and the creation of a diffusion gradient in the hydrogel by media refreshment. Our designed model combined with measurements provides a practical point of reference for diffusion coefficients in real-world culture conditions, enabling more informed choices on hydrogel culture conditions. This model can be improved in the future to simulate more complicated intrinsic hydrogel properties and study the effects of secondary interactions on the diffusion of analytes through the hydrogel.


Assuntos
Hidrogéis , Modelos Teóricos , Engenharia Tecidual/métodos , Medicina Regenerativa , Sobrevivência Celular
2.
Small ; 18(29): e2202112, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35754160

RESUMO

In biomaterials R&D, conventional monolayer cell culture on flat/planar material samples, such as films, is still commonly employed at early stages of the assessment of interactions of cells with candidate materials considered for a biomedical application. In this feasibility study, an approach for the assessment of 3D cell-material interactions through dispersed coaggregation of microparticles from biomaterials into tissue spheroids is presented. Biomaterial microparticles can be created comparatively quickly and easily, allow the miniaturization of the assessment platform, and enable an unhindered remodeling of the dynamic cell-biomaterial system at any time. The aggregation of the microsized biomaterials and the cells is supported by low-attachment round-bottom microwells from thin polymer films arranged in densely packed arrays. The study is conducted by the example of MG63 osteoblast-like and human mesenchymal stem/stromal cells, and a small library of model microbiomaterials related to bone repair and regeneration. For the proof of concept, example interactions including cell adhesion to the material, the hybrid spheroids' morphology, size, and shape, material-associated cell death, cell metabolic activity, cell proliferation, and (osteogenic) differentiation are investigated. The cells in the spheroids are shown to respond to differences in the microbiomaterials' properties, their amounts, and the duration of interaction with them.


Assuntos
Materiais Biocompatíveis , Células-Tronco Mesenquimais , Materiais Biocompatíveis/metabolismo , Técnicas de Cultura de Células/métodos , Humanos , Osteogênese/fisiologia , Esferoides Celulares , Engenharia Tecidual/métodos
3.
Small ; 18(10): e2105704, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34985808

RESUMO

In vivo cells reside in a complex extracellular matrix (ECM) that presents spatially distributed biochemical and -physical cues at the nano- to micrometer scales. Chemical micropatterning is successfully used to generate adhesive islands to control where and how cells attach and restore cues of the ECM in vitro. Although chemical micropatterning has become a powerful tool to study cell-material interactions, only a fraction of the possible micropattern designs was covered so far, leaving many other possible designs still unexplored. Here, a high-throughput screening platform called "Galapagos chip" is developed. It contains a library of 2176 distinct subcellular chemical patterns created using mathematical algorithms and a straightforward UV-induced two-step surface modification. This approach enables the immobilization of ligands in geometrically defined regions onto cell culture substrates. To validate the system, binary RGD/polyethylene glycol patterns are prepared on which human mesenchymal stem cells are cultured, and the authors observe how different patterns affect cell and organelle morphology. As proof of concept, the cells are stained for the mechanosensitive YAP protein, and, using a machine-learning algorithm, it is demonstrated that cell shape and YAP nuclear translocation correlate. It is concluded that the Galapagos chip is a versatile platform to screen geometrical aspects of cell-ECM interaction.


Assuntos
Adesivos , Ensaios de Triagem em Larga Escala , Técnicas de Cultura de Células , Matriz Extracelular/metabolismo , Humanos , Polietilenoglicóis
4.
PLoS Comput Biol ; 17(5): e1008921, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33983922

RESUMO

Cellular and intracellular processes are inherently complex due to the large number of components and interactions, which are often nonlinear and occur at different spatiotemporal scales. Because of this complexity, mathematical modeling is increasingly used to simulate such systems and perform experiments in silico, many orders of magnitude faster than real experiments and often at a higher spatiotemporal resolution. In this article, we will focus on the generic modeling process and illustrate it with an example model of membrane lipid turnover.


Assuntos
Biologia Celular , Modelos Biológicos , Biologia Celular/estatística & dados numéricos , Biologia Computacional , Simulação por Computador , Conceitos Matemáticos , Lipídeos de Membrana/metabolismo , Dinâmica não Linear , Software , Análise Espaço-Temporal
5.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499691

RESUMO

The mammalian intestinal epithelium contains more immune cells than any other tissue, and this is largely because of its constant exposure to pathogens. Macrophages are crucial for maintaining intestinal homeostasis, but they also play a central role in chronic pathologies of the digestive system. We developed a versatile microwell-based intestinal organoid-macrophage co-culture system that enables us to recapitulate features of intestinal inflammation. This microwell-based platform facilitates the controlled positioning of cells in different configurations, continuous in situ monitoring of cell interactions, and high-throughput downstream applications. Using this novel system, we compared the inflammatory response when intestinal organoids were co-cultured with macrophages versus when intestinal organoids were treated with the pro-inflammatory cytokine TNF-α. Furthermore, we demonstrated that the tissue-specific response differs according to the physical distance between the organoids and the macrophages and that the intestinal organoids show an immunomodulatory competence. Our novel microwell-based intestinal organoid model incorporating acellular and cellular components of the immune system can pave the way to unravel unknown mechanisms related to intestinal homeostasis and disorders.


Assuntos
Intestinos , Organoides , Animais , Técnicas de Cocultura , Mucosa Intestinal/patologia , Macrófagos , Mamíferos
6.
Int J Mol Sci ; 21(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455722

RESUMO

Endocrine disruptors (EDs) are chemicals that contribute to health problems by interfering with the physiological production and target effects of hormones, with proven impacts on a number of endocrine systems including the thyroid gland. Exposure to EDs has also been associated with impairment of the reproductive system and incidence in occurrence of obesity, type 2 diabetes, and cardiovascular diseases during ageing. SCREENED aims at developing in vitro assays based on rodent and human thyroid cells organized in three different three-dimensional (3D) constructs. Due to different levels of anatomical complexity, each of these constructs has the potential to increasingly mimic the structure and function of the native thyroid gland, ultimately achieving relevant features of its 3D organization including: 1) a 3D organoid based on stem cell-derived thyrocytes, 2) a 3D organoid based on a decellularized thyroid lobe stromal matrix repopulated with stem cell-derived thyrocytes, and 3) a bioprinted organoid based on stem cell-derived thyrocytes able to mimic the spatial and geometrical features of a native thyroid gland. These 3D constructs will be hosted in a modular microbioreactor equipped with innovative sensing technology and enabling precise control of cell culture conditions. New superparamagnetic biocompatible and biomimetic particles will be used to produce "magnetic cells" to support precise spatiotemporal homing of the cells in the 3D decellularized and bioprinted constructs. Finally, these 3D constructs will be used to screen the effect of EDs on the thyroid function in a unique biological sex-specific manner. Their performance will be assessed individually, in comparison with each other, and against in vivo studies. The resulting 3D assays are expected to yield responses to low doses of different EDs, with sensitivity and specificity higher than that of classical 2D in vitro assays and animal models. Supporting the "Adverse Outcome Pathway" concept, proteogenomic analysis and biological computational modelling of the underlying mode of action of the tested EDs will be pursued to gain a mechanistic understanding of the chain of events from exposure to adverse toxic effects on thyroid function. For future uptake, SCREENED will engage discussion with relevant stakeholder groups, including regulatory bodies and industry, to ensure that the assays will fit with purposes of ED safety assessment. In this project review, we will briefly discuss the current state of the art in cellular assays of EDs and how our project aims at further advancing the field of cellular assays for EDs interfering with the thyroid gland.


Assuntos
Disruptores Endócrinos/toxicidade , Glândula Tireoide/efeitos dos fármacos , Testes de Toxicidade/métodos , Técnicas de Cultura/métodos , Humanos , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Fatores Sexuais , Glândula Tireoide/citologia , Glândula Tireoide/metabolismo , Testes de Toxicidade/normas
7.
Small ; 13(17)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28224757

RESUMO

A novel SMART module, dubbed "DNA-SMART" (DNA substrate modification and replication by thermoforming) is reported, where polymer films are premodified with single-stranded DNA capture strands, microthermoformed into 3D structures, and postmodified with complementary DNA-protein conjugates to realize complex biologically active surfaces within microfluidic devices. As a proof of feasibility, it is demonstrated that microchannels presenting three different proteins on their inner curvilinear surface can be used for selective capture of cells under flow conditions.


Assuntos
DNA/metabolismo , Polímeros/química , Polímeros/metabolismo , Proteínas/metabolismo , DNA/química , Dispositivos Lab-On-A-Chip , Ligação Proteica , Proteínas/química
8.
Cell Tissue Res ; 364(3): 573-584, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26829941

RESUMO

In previous studies human mesenchymal stromal cells (MSCs) maintained the "stemness" of human hematopoietic progenitor cells (HPCs) through direct cell-cell contact in two-dimensional co-culture systems. We establish a three-dimensional (3D) co-culture system based on a custom-made chip, the 3(D)-KITChip, as an in vitro model system of the human hematopoietic stem cell niche. This array of up to 625 microcavities, with 300 µm size in each orientation, was inserted into a microfluidic bioreactor. The microcavities of the 3(D)-KITChip were inoculated with human bone marrow MSCs together with umbilical cord blood HPCs. MSCs used the microcavities as a scaffold to build a complex 3D mesh. HPCs were distributed three-dimensionally inside this MSC network and formed ß-catenin- and N-cadherin-based intercellular junctions to the surrounding MSCs. Using RT(2)-PCR and western blots, we demonstrate that a proportion of HPCs maintained the expression of CD34 throughout a culture period of 14 days. In colony-forming unit assays, the hematopoietic stem cell plasticity remained similar after 14 days of bioreactor co-culture, whereas monolayer co-cultures showed increasing signs of HPC differentiation and loss of stemness. These data support the notion that the 3D microenvironment created within the microcavity array preserves vital stem cell functions of HPCs more efficiently than conventional co-culture systems.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células-Tronco Hematopoéticas/citologia , Modelos Biológicos , Nicho de Células-Tronco , Antígenos CD/metabolismo , Reatores Biológicos , Western Blotting , Contagem de Células , Separação Celular , Técnicas de Cocultura , Ensaio de Unidades Formadoras de Colônias , Imunofluorescência , Humanos , Células-Tronco Mesenquimais/citologia , Reação em Cadeia da Polimerase em Tempo Real
9.
Biomed Microdevices ; 18(3): 52, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27233665

RESUMO

The fluid mechanics of microfluidics is distinctively simpler than the fluid mechanics of macroscopic systems. In macroscopic systems effects such as non-laminar flow, convection, gravity etc. need to be accounted for all of which can usually be neglected in microfluidic systems. Still, there exists only a very limited selection of channel cross-sections for which the Navier-Stokes equation for pressure-driven Poiseuille flow can be solved analytically. From these equations, velocity profiles as well as flow rates can be calculated. However, whenever a cross-section is not highly symmetric (rectangular, elliptical or circular) the Navier-Stokes equation can usually not be solved analytically. In all of these cases, numerical methods are required. However, in many instances it is not necessary to turn to complex numerical solver packages for deriving, e.g., the velocity profile of a more complex microfluidic channel cross-section. In this paper, a simple spreadsheet analysis tool (here: Microsoft Excel) will be used to implement a simple numerical scheme which allows solving the Navier-Stokes equation for arbitrary channel cross-sections.


Assuntos
Simulação por Computador , Microfluídica/instrumentação , Microfluídica/métodos , Análise Numérica Assistida por Computador
10.
Adv Sci (Weinh) ; 11(4): e2304987, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991133

RESUMO

Combining high-throughput generation and high-content imaging of embryo models will enable large-scale screening assays in the fields of (embryo) toxicity, drug development, embryogenesis, and reproductive medicine. This study shows the continuous culture and in situ (i.e., in microwell) imaging-based readout of a 3D stem cell-based model of peri-implantation epiblast (Epi)/extraembryonic endoderm (XEn) development with an expanded pro-amniotic cavity (PAC) (E3.5 E5.5), namely XEn/EPiCs. Automated image analysis and supervised machine learning permit the identification of embryonic morphogenesis, tissue compartmentalization, cell differentiation, and consecutive classification. Screens with signaling pathway modulators at different time windows provide spatiotemporal information on their phenotypic effect on developmental processes leading to the formation of XEn/EPiCs. Exposure of the biological model in the microwell platform to pathway modulators at two time windows, namely 0-72 h and 48-120 h, show that Wnt and Fgf/MAPK pathway modulators affect Epi differentiation and its polarization, while modulation of BMP and Tgfß/Nodal pathway affects XEn specification and epithelialization. Further, their collective role is identified in the timing of the formation and expansion of PAC. The newly developed, scalable culture and analysis platform, thereby, provides a unique opportunity to quantitatively and systematically study effects of pathway modulators on early embryonic development.


Assuntos
Embrião de Mamíferos , Endoderma , Gravidez , Feminino , Humanos , Endoderma/metabolismo , Diferenciação Celular , Morfogênese , Células-Tronco Embrionárias
11.
Macromol Biosci ; 24(1): e2300109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37401723

RESUMO

Developing biomaterials for corneal repair and regeneration is crucial for maintaining clear vision. The cornea, a specialized tissue, relies on corneal keratocytes, that respond to their mechanical environment. Altering stiffness affects keratocyte behavior, but static stiffness alone cannot capture the dynamic properties of in vivo tissue. This study proposes that the cornea exhibits time-dependent mechanical properties, similar to other tissues, and aims to replicate these properties in potential therapeutic matrices. First, the cornea's stress relaxation properties are investigated using nanoindentation, revealing 15% relaxation within 10 seconds. Hydrogel dynamicity is then modulated using a specially formulated alginate-PEG and alginate-norbornene mixture. The tuning of the hydrogel's dynamicity is achieved through a photoinitiated norbornene-norbornene dimerization reaction, resulting in relaxation times ranging from 30 seconds to 10 minutes. Human primary corneal keratocytes are cultured on these hydrogels, demonstrating reduced αSMA (alpha smooth muscle actin) expression and increased filopodia formation on slower relaxing hydrogels, resembling their native phenotype. This in vitro model can enable the optimization of stress relaxation for various cell types, including corneal keratocytes, to control tissue formation. Combining stress relaxation optimization with stiffness assessment provides a more accurate tool for studying cell behavior and reduces mechanical mismatch with native tissues in implanted constructs.


Assuntos
Alginatos , Hidrogéis , Humanos , Hidrogéis/farmacologia , Alginatos/farmacologia , Compostos de Sulfidrila , Córnea , Norbornanos , Engenharia Tecidual/métodos
12.
Adv Mater ; 36(25): e2313306, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593372

RESUMO

Monochorionic twinning of human embryos increases the risk of complications during pregnancy. The rarity of such twinning events, combined with ethical constraints in human embryo research, makes investigating the mechanisms behind twinning practically infeasible. As a result, there is a significant knowledge gap regarding the origins and early phenotypic presentation of monochorionic twin embryos. In this study, a microthermoformed-based microwell screening platform is used to identify conditions that efficiently induce monochorionic twins in human stem cell-based blastocyst models, termed "twin blastoids". These twin blastoids contain a cystic GATA3+ trophectoderm-like epithelium encasing two distinct inner cell masses (ICMs). Morphological and morphokinetic analyses reveal that twinning occurs during the cavitation phase via splitting of the OCT4+ pluripotent core. Notably, each ICM in twin blastoids contains its own NR2F2+ polar trophectoderm-like region, ready for implantation. This is functionally tested in a microfluidic chip-based implantation assay with epithelial endometrium cells. Under defined flow regimes, twin blastoids show increased adhesion capacity compared to singleton blastoids, suggestive of increased implantation potential. In conclusion, the development of technology enabling large-scale formation of twin blastoids, coupled with high-sensitivity readout capabilities, presents an unprecedented opportunity for systematically exploring monochorionic twin formation and its impact on embryonic development.


Assuntos
Gemelaridade Monozigótica , Humanos , Feminino , Gravidez , Blastocisto/citologia , Embrião de Mamíferos/citologia , Córion/citologia , Bioengenharia/métodos , Modelos Biológicos , Implantação do Embrião
13.
Trends Biotechnol ; 42(7): 910-928, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38493050

RESUMO

In bone tissue engineering (TE) and regeneration, miniaturized, (sub)millimeter-sized bone models have become a popular trend since they bring about physiological biomimicry, precise orchestration of concurrent stimuli, and compatibility with high-throughput setups and high-content imaging. They also allow efficient use of cells, reagents, materials, and energy. In this review, we describe the state of the art of miniaturized in vitro bone models, or 'mini-bones', describing these models based on their characteristics of (multi)cellularity and engineered extracellular matrix (ECM), and elaborating on miniaturization approaches and fabrication techniques. We analyze the performance of 'mini-bone' models according to their applications for studying basic bone biology or as regeneration models, disease models, and screening platforms, and provide an outlook on future trends, challenges, and opportunities.


Assuntos
Osso e Ossos , Miniaturização , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Osso e Ossos/fisiologia , Animais , Modelos Biológicos , Regeneração Óssea , Matriz Extracelular/química
14.
Adv Healthc Mater ; 13(6): e2303672, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37902084

RESUMO

Tendon is a highly organized tissue that transmits forces between muscle and bone. The architecture of the extracellular matrix of tendon, predominantly from collagen type I, is important for maintaining tenocyte phenotype and function. Therefore, in repair and regeneration of damaged and diseased tendon tissue, it is crucial to restore the aligned arrangement of the collagen type I fibers of the original matrix. To this end, a novel, user-friendly microfluidic piggyback platform is developed allowing the controlled patterned formation and alignment of collagen fibers simply on the bottom of culture dishes. Rat tenocytes cultured on the micropatterns of aligned fibrous collagen exhibit a more elongated morphology. The cells also show an increased expression of tenogenic markers at the gene and protein level compared to tenocytes cultured on tissue culture plastic or non-fibrillar collagen coatings. Moreover, using imprinted polystyrene replicas of aligned collagen fibers, this work shows that the fibrillar structure of collagen per se affects the tenocyte morphology, whereas the biochemical nature of collagen plays a prominent role in the expression of tenogenic markers. Beyond the controlled provision of aligned collagen, the microfluidic platform can aid in developing more physiologically relevant in vitro models of tendon and its regeneration.


Assuntos
Colágeno Tipo I , Tenócitos , Animais , Ratos , Colágeno , Matriz Extracelular , Fenótipo
15.
Adv Healthc Mater ; 13(13): e2303444, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38247306

RESUMO

The convergence of organoid and organ-on-a-chip (OoC) technologies is urgently needed to overcome limitations of current 3D in vitro models. However, integrating organoids in standard OoCs faces several technical challenges, as it is typically laborious, lacks flexibility, and often results in even more complex and less-efficient cell culture protocols. Therefore, specifically adapted and more flexible microfluidic platforms need to be developed to facilitate the incorporation of complex 3D in vitro models. Here, a modular, tubeless fluidic circuit board (FCB) coupled with reversibly sealed cell culture bricks for dynamic culture of embryonic stem cell-derived thyroid follicles is developed. The FCB is fabricated by milling channels in a polycarbonate (PC) plate followed by thermal bonding against another PC plate. LEGO-like fluidic interconnectors allow plug-and-play connection between a variety of cell culture bricks and the FCB. Lock-and-play clamps are integrated in the organoid brick to enable easy (un)loading of organoids. A multiplexed perfusion experiment is conducted with six FCBs, where thyroid organoids are transferred on-chip within minutes and cultured up to 10 d without losing their structure and functionality, thus validating this system as a flexible, easy-to-use platform, capable of synergistically combining organoids with advanced microfluidic platforms.


Assuntos
Organoides , Organoides/citologia , Animais , Camundongos , Dispositivos Lab-On-A-Chip , Cimento de Policarboxilato/química , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Glândula Tireoide/citologia , Microfluídica/métodos , Microfluídica/instrumentação , Células-Tronco Embrionárias/citologia
16.
ACS Appl Mater Interfaces ; 16(14): 17347-17360, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561903

RESUMO

Three-dimensional (3D) cell assemblies, such as multicellular spheroids, can be powerful biological tools to closely mimic the complexity of cell-cell and cell-matrix interactions in a native-like microenvironment. However, potential applications of large spheroids are limited by the insufficient diffusion of oxygen and nutrients through the spheroids and, thus, result in the formation of a necrotic core. To overcome this drawback, we present a new strategy based on nanoparticle-coated microparticles. In this study, microparticles function as synthetic centers to regulate the diffusion of small molecules, such as oxygen and nutrients, within human mesenchymal stem cell (hMSC) spheroids. The nanoparticle coating on the microparticle surface acts as a nutrient reservoir to release glucose locally within the spheroids. We first coated the surface of the poly(lactic-co-glycolic acid) (PLGA) microparticles with mesoporous silica nanoparticles (MSNs) based on electrostatic interactions and then formed cell-nanofunctionalized microparticle spheroids. Next, we investigated the stability of the MSN coating on the microparticles' surface during 14 days of incubation in cell culture medium at 37 °C. Then, we evaluated the influence of MSN-coated PLGA microparticles on spheroid aggregation and cell viability. Our results showed the formation of homogeneous spheroids with good cell viability. As a proof of concept, fluorescently labeled glucose (2-NBD glucose) was loaded into the MSNs at different concentrations, and the release behavior was monitored. For cell culture studies, glucose was loaded into the MSNs coated onto the PLGA microparticles to sustain local nutrient release within the hMSC spheroids. In vitro results demonstrated that the local delivery of glucose from MSNs enhanced the cell viability in spheroids during a short-term hypoxic culture. Taken together, the newly developed nanofunctionalized microparticle-based delivery system may offer a versatile platform for local delivery of small molecules within 3D cellular assemblies and, thus, improve cell viability in spheroids.


Assuntos
Dióxido de Silício , Esferoides Celulares , Humanos , Oxigênio
17.
Bioengineering (Basel) ; 11(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38671823

RESUMO

In the event of disease or injury, restoration of the native organization of cells and extracellular matrix is crucial for regaining tissue functionality. In the cornea, a highly organized collagenous tissue, keratocytes can align along the anisotropy of the physical microenvironment, providing a blueprint for guiding the organization of the collagenous matrix. Inspired by this physiological process, anisotropic contact guidance cues have been employed to steer the alignment of keratocytes as a first step to engineer in vitro cornea-like tissues. Despite promising results, two major hurdles must still be overcome to advance the field. First, there is an enormous design space to be explored in optimizing cellular contact guidance in three dimensions. Second, the role of contact guidance cues in directing the long-term deposition and organization of extracellular matrix proteins remains unknown. To address these challenges, here we combined two microengineering strategies-UV-based protein patterning (2D) and two-photon polymerization of topographies (2.5D)-to create a library of anisotropic contact guidance cues with systematically varying height (H, 0 µm ≤ H ≤ 20 µm) and width (W, 5 µm ≤ W ≤ 100 µm). With this unique approach, we found that, in the short term (24 h), the orientation and morphology of primary human fibroblastic keratocytes were critically determined not only by the pattern width, but also by the height of the contact guidance cues. Upon extended 7-day cultures, keratocytes were shown to produce a dense, fibrous collagen network along the direction of the contact guidance cues. Moreover, increasing the heights also increased the aligned fraction of deposited collagen and the contact guidance response of cells, all whilst the cells maintained the fibroblastic keratocyte phenotype. Our study thus reveals the importance of dimensionality of the physical microenvironment in steering both cellular organization and the formation of aligned, collagenous tissues.

18.
Angew Chem Int Ed Engl ; 52(52): 13942-57, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24288270

RESUMO

The term "cyborg" refers to a cybernetic organism, which characterizes the chimera of a living organism and a machine. Owing to the widespread application of intracorporeal medical devices, cyborgs are no longer exclusively a subject of science fiction novels, but technically they already exist in our society. In this review, we briefly summarize the development of modern prosthetics and the evolution of brain-machine interfaces, and discuss the latest technical developments of implantable devices, in particular, biocompatible integrated electronics and microfluidics used for communication and control of living organisms. Recent examples of animal cyborgs and their relevance to fundamental and applied biomedical research and bioethics in this novel and exciting field at the crossroads of chemistry, biomedicine, and the engineering sciences are presented.


Assuntos
Terapia por Estimulação Elétrica/métodos , Materiais Biocompatíveis , Interfaces Cérebro-Computador , Terapia por Estimulação Elétrica/instrumentação , Eletrônica , Humanos
19.
Front Mol Biosci ; 10: 1102209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743212

RESUMO

Intestinal organoids recapitulate many features of the in vivo gastrointestinal tract and have revolutionized in vitro studies of intestinal function and disease. However, the restricted accessibility of the apical surface of the organoids facing the central lumen (apical-in) limits studies related to nutrient uptake and drug absorption and metabolism. Here, we demonstrate that pluripotent stem cell (PSC)-derived intestinal organoids with reversed epithelial polarity (apical-out) can successfully recapitulate tissue-specific functions. In particular, these apical-out organoids show strong epithelial barrier formation with all the major junctional complexes, nutrient transport and active lipid metabolism. Furthermore, the organoids express drug-metabolizing enzymes and relevant apical and basolateral transporters. The scalable and robust generation of functional, apical-out intestinal organoids lays the foundation for a completely new range of organoid-based high-throughput/high-content in vitro applications in the fields of nutrition, metabolism and drug discovery.

20.
J Tissue Eng ; 14: 20417314221149208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36699634

RESUMO

Microbiome is an integral part of the gut and is essential for its proper function. Imbalances of the microbiota can be devastating and have been linked with several gastrointestinal conditions. Current gastrointestinal models do not fully reflect the in vivo situation. Thus, it is important to establish more advanced in vitro models to study host-microbiome/pathogen interactions. Here, we developed for the first time an apical-out human small intestinal organoid model in hypoxia, where the apical surface is directly accessible and exposed to a hypoxic environment. These organoids mimic the intestinal cell composition, structure and functions and provide easy access to the apical surface. Co-cultures with the anaerobic strains Lactobacillus casei and Bifidobacterium longum showed successful colonization and probiotic benefits on the organoids. These novel hypoxia-tolerant apical-out small intestinal organoids will pave the way for unraveling unknown mechanisms related to host-microbiome interactions and serve as a tool to develop microbiome-related probiotics and therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA