Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 33(11): 12324-12335, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31442078

RESUMO

GNA2091 is one of the components of the 4-component meningococcal serogroup B vaccine (4CMenB) vaccine and is highly conserved in all meningococcal strains. However, its functional role has not been fully characterized. Here we show that nmb2091 is part of an operon and is cotranscribed with the nmb2089, nmb2090, and nmb2092 adjacent genes, and a similar but reduced operon arrangement is conserved in many other gram-negative bacteria. Deletion of the nmb2091 gene causes an aggregative phenotype with a mild defect in cell separation; differences in the outer membrane composition and phospholipid profile, in particular in the phosphoethanolamine levels; an increased level of outer membrane vesicles; and deregulation of the zinc-responsive genes such as znuD. Finally, the ∆2091 strain is attenuated with respect to the wild-type strain in competitive index experiments in the infant rat model of meningococcal infection. Altogether these data suggest that GNA2091 plays important roles in outer membrane architecture, biogenesis, homeostasis, and in meningococcal survival in vivo, and a model for its role is discussed. These findings highlight the importance of GNA2091 as a vaccine component.-Seib, K. L., Haag, A. F., Oriente, F., Fantappiè, L., Borghi, S., Semchenko, E. A., Schulz, B. L., Ferlicca, F., Taddei, A. R., Giuliani, M. M., Pizza, M., Delany, I. The meningococcal vaccine antigen GNA2091 is an analogue of YraP and plays key roles in outer membrane stability and virulence.


Assuntos
Antígenos de Bactérias/fisiologia , Membrana Externa Bacteriana/química , Vacinas Meningocócicas , Animais , Antígenos de Bactérias/genética , Membrana Externa Bacteriana/fisiologia , Infecções Meningocócicas/mortalidade , Vacinas Meningocócicas/genética , Neisseria meningitidis Sorogrupo B/genética , Neisseria meningitidis Sorogrupo B/patogenicidade , Óperon , Proteínas Periplásmicas/fisiologia , Ratos , Ratos Wistar , Regulon , Virulência , Zinco/farmacologia
2.
Proc Natl Acad Sci U S A ; 113(10): 2714-9, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26888286

RESUMO

Factor H binding protein (fHbp) is a lipoprotein of Neisseria meningitidis important for the survival of the bacterium in human blood and a component of two recently licensed vaccines against serogroup B meningococcus (MenB). Based on 866 different amino acid sequences this protein is divided into three variants or two families. Quantification of the protein is done by immunoassays such as ELISA or FACS that are susceptible to the sequence variation and expression level of the protein. Here, selected reaction monitoring mass spectrometry was used for the absolute quantification of fHbp in a large panel of strains representative of the population diversity of MenB. The analysis revealed that the level of fHbp expression can vary at least 15-fold and that variant 1 strains express significantly more protein than variant 2 or variant 3 strains. The susceptibility to complement-mediated killing correlated with the amount of protein expressed by the different meningococcal strains and this could be predicted from the nucleotide sequence of the promoter region. Finally, the absolute quantification allowed the calculation of the number of fHbp molecules per cell and to propose a mechanistic model of the engagement of C1q, the recognition component of the complement cascade.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Neisseria meningitidis Sorogrupo B/metabolismo , Sequência de Aminoácidos , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Variação Genética , Humanos , Espectrometria de Massas/métodos , Meningite Meningocócica/imunologia , Meningite Meningocócica/microbiologia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B/classificação , Neisseria meningitidis Sorogrupo B/genética , Filogenia , Especificidade da Espécie
3.
FASEB J ; 30(1): 93-101, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26304221

RESUMO

Neisseria adhesin A (NadA) is one of the antigens of Bexsero, the recently licensed multicomponent vaccine against serogroup B Neisseria meningitidis (MenB). NadA belongs to the class of oligomeric coiled-coil adhesins and is able to mediate adhesion and invasion of human epithelial cells. As a vaccine antigen, NadA has been shown to induce high levels of bactericidal antibodies; however, the domains important for protective response are still unknown. In order to further investigate its immunogenic properties, we have characterized the murine IgG1 mAb (6E3) that was able to recognize the 2 main antigenic variants of NadA on the surface of MenB strains. The epitope targeted by mAb 6E3 was mapped by hydrogen-deuterium exchange mass spectrometry and shown to be located on the coiled-coil stalk region of NadA (aa 206-249). Although no serum bactericidal activity was observed for murine IgG1 mAb 6E3, functional activity was restored when using chimeric antibodies in which the variable regions of the murine mAb 6E3 were fused to human IgG3 constant regions, thus confirming the protective nature of the mAb 6E3 epitope. The use of chimeric antibody molecules will enable future investigations of complement-mediated antibody functionality independently of the Fc-mediated differences in complement activation.


Assuntos
Adesinas Bacterianas/imunologia , Anticorpos Antibacterianos/imunologia , Epitopos/imunologia , Infecções Meningocócicas/imunologia , Vacinas Meningocócicas/imunologia , Neisseria/imunologia , Animais , Medição da Troca de Deutério/métodos , Mapeamento de Epitopos/métodos , Humanos , Camundongos
4.
Emerg Infect Dis ; 22(2): 309-11, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26811872

RESUMO

Serum samples from children immunized with a meningococcal serogroup B vaccine demonstrated potent serum bactericidal antibody activity against the hypervirulent Neisseria meningitidis serogroup W strain circulating in England. The recent introduction of this vaccine into the United Kingdom national immunization program should also help protect infants against this endemic strain.


Assuntos
Reações Cruzadas/imunologia , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Humanos , Lactente , Recém-Nascido , Neisseria meningitidis/classificação , Neisseria meningitidis/genética , Reino Unido/epidemiologia , Vacinação
5.
J Bacteriol ; 198(4): 644-54, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26644430

RESUMO

UNLABELLED: Neisseria meningitidis, an exclusively human pathogen and the leading cause of bacterial meningitis, must adapt to different host niches during human infection. N. meningitidis can utilize a restricted range of carbon sources, including lactate, glucose, and pyruvate, whose concentrations vary in host niches. Microarray analysis of N. meningitidis grown in a chemically defined medium in the presence or absence of glucose allowed us to identify genes regulated by carbon source availability. Most such genes are implicated in energy metabolism and transport, and some are implicated in virulence. In particular, genes involved in glucose catabolism were upregulated, whereas genes involved in the tricarboxylic acid cycle were downregulated. Several genes encoding surface-exposed proteins, including the MafA adhesins and Neisseria surface protein A, were upregulated in the presence of glucose. Our microarray analysis led to the identification of a glucose-responsive hexR-like transcriptional regulator that controls genes of the central carbon metabolism of N. meningitidis in response to glucose. We characterized the HexR regulon and showed that the hexR gene is accountable for some of the glucose-responsive regulation; in vitro assays with the purified protein showed that HexR binds to the promoters of the central metabolic operons of the bacterium. Based on DNA sequence alignment of the target sites, we propose a 17-bp pseudopalindromic consensus HexR binding motif. Furthermore, N. meningitidis strains lacking hexR expression were deficient in establishing successful bacteremia in an infant rat model of infection, indicating the importance of this regulator for the survival of this pathogen in vivo. IMPORTANCE: Neisseria meningitidis grows on a limited range of nutrients during infection. We analyzed the gene expression of N. meningitidis in response to glucose, the main energy source available in human blood, and we found that glucose regulates many genes implicated in energy metabolism and nutrient transport, as well as some implicated in virulence. We identified and characterized a transcriptional regulator (HexR) that controls metabolic genes of N. meningitidis in response to glucose. We generated a mutant lacking HexR and found that the mutant was impaired in causing systemic infection in animal models. Since N. meningitidis lacks known bacterial regulators of energy metabolism, our findings suggest that HexR plays a major role in its biology by regulating metabolism in response to environmental signals.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Meningite Meningocócica/microbiologia , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Metabolismo Energético , Humanos , Dados de Sequência Molecular , Óperon , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Regulon
6.
J Clin Microbiol ; 52(6): 1901-10, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24648565

RESUMO

Neisseria meningitidis is an obligate human commensal that commonly colonizes the oropharyngeal mucosa. Carriage is age dependent and very common in young adults. The relationships between carriage and invasive disease are not completely understood. In this work, we performed a longitudinal carrier study in adolescents and young adults (173 subjects). Overall, 32 subjects (18.5%) had results that were positive for meningococcal carriage in at least one visit (average monthly carriage rate, 12.1%). Only five subjects tested positive at all four visits. All meningococcal isolates were characterized by molecular and serological techniques. Multilocus sequence typing, PorA typing, and sequencing of the 4CMenB vaccine antigens were used to assess strain diversity. The majority of positive subjects were colonized by capsule null (34.4%) and capsular group B strains (28.1%), accounting for 23.5% and 29.4% of the total number of isolates, respectively. The fHbp and nhba genes were present in all isolates, while the nadA gene was present in 5% of the isolates. The genetic variability of the 4CMenB vaccine antigens in this collection was relatively high compared with that of other disease-causing strain panels. Indications about the persistence of the carriage state were limited to the time span of the study. All strains isolated from the same subject were identical or cumulated minor changes over time. The expression levels and antigenicities of the 4CMenB vaccine antigens in each strain were analyzed by the meningococcal antigen typing system (MATS), which revealed that expression can change over time in the same individual. Future analysis of antigen variability and expression in carrier strains after the introduction of the MenB vaccine will allow for a definition of its impact on nasopharyngeal/oropharyngeal carriage.


Assuntos
Técnicas de Tipagem Bacteriana , Portador Sadio/microbiologia , Infecções Meningocócicas/microbiologia , Tipagem Molecular , Neisseria meningitidis/classificação , Neisseria meningitidis/isolamento & purificação , Adolescente , Antígenos de Bactérias/análise , Portador Sadio/epidemiologia , DNA Bacteriano/genética , Feminino , Variação Genética , Genótipo , Humanos , Itália/epidemiologia , Estudos Longitudinais , Masculino , Infecções Meningocócicas/epidemiologia , Neisseria meningitidis/genética , Neisseria meningitidis/imunologia , Orofaringe/microbiologia , Sorotipagem , Adulto Jovem
7.
Proc Natl Acad Sci U S A ; 108(27): 11169-74, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21690334

RESUMO

Oil-in-water emulsions have been successfully used to increase the efficacy, immunogenicity, and cross-protection of human vaccines; however, their mechanism of action is still largely unknown. Nlrp3 inflammasome has been previously associated to the activity of alum, another adjuvant broadly used in human vaccines, and MyD88 adaptor protein is required for the adjuvanticity of most Toll-like receptor agonists. We compared the contribution of Nlrp3 and MyD88 to the adjuvanticity of alum, the oil-in-water emulsion MF59, and complete Freund's adjuvant in mice using a three-component vaccine against serogroup B Neisseria meningitidis (rMenB). Although the basal antibody responses to the nonadjuvanted rMenB vaccine were largely dependent on Nlrp3, the high-level antibody responses induced by alum, MF59, or complete Freund's adjuvant did not require Nlrp3. Surprisingly, we found that MF59 requires MyD88 to enhance bactericidal antibody responses to the rMenB vaccine. Because MF59 did not activate any of the Toll-like receptors in vitro, we propose that MF59 requires MyD88 for a Toll-like receptor-independent signaling pathway.


Assuntos
Adjuvantes Imunológicos/farmacologia , Proteínas de Transporte/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Polissorbatos/farmacologia , Esqualeno/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Anticorpos Antibacterianos/biossíntese , Vacinas Bacterianas/administração & dosagem , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Emulsões , Feminino , Adjuvante de Freund/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neisseria meningitidis Sorogrupo B/imunologia , Polissorbatos/administração & dosagem , Transdução de Sinais , Esqualeno/administração & dosagem , Receptores Toll-Like/metabolismo , Vacinas Sintéticas/administração & dosagem
8.
Infect Immun ; 81(2): 560-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23230289

RESUMO

The NadA adhesin is a major component of 4CMenB, a novel vaccine to prevent meningococcus serogroup B (MenB) infection. Under in vitro growth conditions, nadA is repressed by the regulator NadR and poorly expressed, resulting in inefficient killing of MenB strains by anti-NadA antibodies. Interestingly, sera from children infected with strains that express low levels of NadA in laboratory growth nevertheless recognize the NadA antigen, suggesting that NadA expression during infection may be different from that observed in vitro. In a strain panel covering a range of NadA levels, repression was relieved through deleting nadR. All nadR knockout strains expressed high levels of NadA and were efficiently killed by sera from subjects immunized with 4CMenB. A selected MenB strain, NGP165, mismatched for other vaccine antigens, is not killed by sera from immunized infants when the strain is grown in vitro. However, in an in vivo passive protection model, the same sera effectively protected infant rats from bacteremia with NGP165. Furthermore, we identify a novel hydroxyphenylacetic acid (HPA) derivative, reported by others to be produced during inflammation, which induces expression of NadA in vitro, leading to efficient antibody-mediated killing. Finally, using bioluminescent reporters, nadA expression in the infant rat model was induced in vivo at 3 h postinfection. Our results suggest that during infectious disease, NadR repression is alleviated due to niche-specific signals, resulting in high levels of NadA expression from any nadA-positive (nadA(+)) strain and therefore efficient killing by anti-NadA antibodies elicited by the 4CMenB vaccine.


Assuntos
Adesinas Bacterianas/genética , Vacinas Meningocócicas/administração & dosagem , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B/genética , Neisseria meningitidis Sorogrupo B/imunologia , Neisseria meningitidis/genética , Neisseria meningitidis/imunologia , Adesinas Bacterianas/imunologia , Animais , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Pré-Escolar , Ensaios Clínicos como Assunto , Feminino , Humanos , Lactente , Recém-Nascido , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/microbiologia , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/genética , Camundongos , Ratos , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Transcrição Gênica
9.
Proc Natl Acad Sci U S A ; 107(45): 19490-5, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20962280

RESUMO

A unique multicomponent vaccine against serogroup B meningococci incorporates the novel genome-derived proteins fHbp, NHBA, and NadA that may vary in sequence and level of expression. Measuring the effectiveness of such vaccines, using the accepted correlate of protection against invasive meningococcal disease, could require performing the serum bactericidal assay (SBA) against many diverse strains for each geographic region. This approach is impractical, especially for infants, where serum volumes are very limited. To address this, we developed the meningococcal antigen typing system (MATS) by combining a unique vaccine antigen-specific ELISA, which detects qualitative and quantitative differences in antigens, with PorA genotyping information. The ELISA correlates with killing of strains by SBA and measures both immunologic cross-reactivity and quantity of the antigens NHBA, NadA, and fHbp. We found that strains exceeding a threshold value in the ELISA for any of the three vaccine antigens had ≥80% probability of being killed by immune serum in the SBA. Strains positive for two or more antigens had a 96% probability of being killed. Inclusion of multiple different antigens in the vaccine improves breadth of coverage and prevents loss of coverage if one antigen mutates or is lost. The finding that a simple and high-throughput assay correlates with bactericidal activity is a milestone in meningococcal vaccine development. This assay allows typing of large panels of strains and prediction of coverage of protein-based meningococcal vaccines. Similar assays may be used for protein-based vaccines against other bacteria.


Assuntos
Antígenos de Bactérias/análise , Técnicas de Tipagem Bacteriana/métodos , Reações Cruzadas/imunologia , Vacinas Meningocócicas/farmacologia , Neisseria meningitidis Sorogrupo B/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/uso terapêutico , Ensaio de Imunoadsorção Enzimática/métodos , Genótipo , Humanos , Vacinas Meningocócicas/imunologia , Especificidade da Espécie
10.
Proc Natl Acad Sci U S A ; 107(8): 3770-5, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133713

RESUMO

GNA2132 is a Neisseria meningitidis antigen of unknown function, discovered by reverse vaccinology, which has been shown to induce bactericidal antibodies in animal models. Here we show that this antigen induces protective immunity in humans and it is recognized by sera of patients after meningococcal disease. The protein binds heparin in vitro through an Arg-rich region and this property correlates with increased survival of the unencapsulated bacterium in human serum. Furthermore, two proteases, the meningococcal NalP and human lactoferrin, cleave the protein upstream and downstream from the Arg-rich region, respectively. We conclude that GNA2132 is an important protective antigen of N. meningitidis and we propose to rename it, Neisserial Heparin Binding Antigen (NHBA).


Assuntos
Antígenos de Bactérias/imunologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas Sanguíneas/imunologia , Proteínas de Transporte/imunologia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Fatores de Virulência/imunologia , Sequência de Aminoácidos , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Humanos , Lactoferrina/química , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/química , Vacinas Meningocócicas/genética , Neisseria meningitidis/patogenicidade , Fatores de Virulência/química , Fatores de Virulência/genética
11.
NPJ Vaccines ; 8(1): 54, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045859

RESUMO

The ability of Neisseria meningitidis Outer Membrane Vesicles (OMV) to induce protective responses in humans is well established and mainly attributed to Porin A (PorA). However, the contribution of additional protein antigens to protection remains to be elucidated. In this study we dissected the immunogenicity of antigens originating from the OMV component of the 4CMenB vaccine in mice and humans. We collected functional data on a panel of strains for which bactericidal responses to 4CMenB in infants was attributable to the OMV component and evaluated the role of 30 OMV-specific protein antigens in cross-coverage. By using tailor-made protein microarrays, the immunosignature of OMV antigens was determined. Three of these proteins, OpcA, NspA, and PorB, triggered mouse antibodies that were bactericidal against several N. meningitidis strains. Finally, by genetic deletion and/or serum depletion studies, we demonstrated the ability of OpcA and PorB to induce functional immune responses in infant sera after vaccination. In conclusion, while confirming the role of PorA in eliciting protective immunity, we identified two OMV antigens playing a key role in protection of infants vaccinated with the 4CMenB vaccine against different N. meningitidis serogroup B strains.

12.
Infect Immun ; 80(1): 451-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22083702

RESUMO

Streptococcus pneumoniae pilus 1 is present in 30 to 50% of invasive disease-causing strains and is composed of three subunits: the adhesin RrgA, the major backbone subunit RrgB, and the minor ancillary protein RrgC. RrgB exists in three distinct genetic variants and, when used to immunize mice, induces an immune response specific for each variant. To generate an antigen able to protect against the infection caused by all pilus-positive S. pneumoniae strains, we engineered a fusion protein containing the three RrgB variants (RrgB321). RrgB321 elicited antibodies against proteins from organisms in the three clades and protected mice against challenge with piliated pneumococcal strains. RrgB321 antisera mediated complement-dependent opsonophagocytosis of piliated strains at levels comparable to those achieved with the PCV7 glycoconjugate vaccine. These results suggest that a vaccine composed of RrgB321 has the potential to cover 30% or more of all pneumococcal strains and support the inclusion of this fusion protein in a multicomponent vaccine against S. pneumoniae.


Assuntos
Atividade Bactericida do Sangue , Proteínas de Fímbrias/imunologia , Fímbrias Bacterianas/imunologia , Proteínas Opsonizantes/sangue , Vacinas Pneumocócicas/imunologia , Proteínas Recombinantes de Fusão/imunologia , Streptococcus pneumoniae/imunologia , Animais , Anticorpos Antibacterianos/sangue , Proteínas do Sistema Complemento/imunologia , Feminino , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/imunologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
13.
Infect Immun ; 79(2): 970-81, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21149595

RESUMO

Neisseria meningitidis is a commensal of the human nasopharynx but is also a major cause of septicemia and meningitis. The meningococcal factor H binding protein (fHbp) binds human factor H (fH), enabling downregulation of complement activation on the bacterial surface. fHbp is a component of two serogroup B meningococcal vaccines currently in clinical development. Here we characterize 12 fHbp subvariants for their level of surface exposure and ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies. Flow cytometry and Western analysis revealed that all strains examined expressed fHbp on their surface to different extents and bound fH in an fHbp-dependent manner. However, differences in fH binding did not always correlate with the level of fHbp expression, indicating that this is not the only factor affecting the amount of fH bound. To overcome the issue of strain variability in fHbp expression, the MC58ΔfHbp strain was genetically engineered to express different subvariants from a constitutive heterologous promoter. These recombinant strains were characterized for fH binding, and the data confirmed that each subvariant binds different levels of fH. Surface plasmon resonance revealed differences in the stability of the fHbp-fH complexes that ranged over 2 orders of magnitude, indicating that differences in residues between and within variant groups can influence fH binding. Interestingly, the level of survival in human sera of recombinant MC58 strains expressing diverse subvariants did not correlate with the level of fH binding, suggesting that the interaction of fHbp with fH is not the only function of fHbp that influences serum resistance. Furthermore, cross-reactive bactericidal activity was seen within each variant group, although the degree of activity varied, suggesting that amino acid differences within each variant group influence the bactericidal antibody response.


Assuntos
Anticorpos Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Fator H do Complemento/metabolismo , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Sistema Complemento , Feminino , Variação Genética , Humanos , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/microbiologia , Camundongos , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Coelhos
14.
Hum Vaccin Immunother ; 17(5): 1442-1449, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33325757

RESUMO

An increase in invasive meningococcal disease (IMD) incidence was observed in Tuscany in 2015/2016, mainly due to hypervirulent clonal complex (cc) 11 strains. In a post-hoc analysis, we assessed bactericidal activity of antibodies in sera from children primed with MenACWY-CRM or MenC-CRM conjugate vaccines and receiving a MenACWY-CRM booster dose against 5 meningococcal C (MenC) strains isolated from IMD cases. Sera collected from 90 infants/toddlers who participated in a phase III, open-label study (NCT00667602) and its extension (NCT01345721) were tested by serum bactericidal activity assay with human complement (hSBA). Children were primed with either MenACWY-CRM at 6-8 and 12 months of age (group 2_MenACWY; N = 30), MenACWY-CRM (group 1_MenACWY; N = 30), or MenC-CRM at 12 months of age (group 1_MenC; N = 30); all received MenACWY-CRM booster dose at 22-45 months of age. Four tested strains (FI001-FI004) were C:P1.5-1,10-8:F3-6:ST-11 (cc11) and 1 (FI005) was C:P1.7-4,14-6:F3-9:ST-1031 (cc334). Overall, immune responses tended to be higher against Fl002-FI004 than Fl001 and Fl005. Geometric mean titers were high in group 2_MenACWY (range: 94.8 [FI005]-588.1 [FI004]) and very high post-boosting with MenACWY-CRM in all groups (176.9 [FI005]-3911.0 [FI004]). Seroresponse rates tended to be higher in group 1_MenC (33.3% [FI005]-93.3% [FI004]) than in group 1_MenACWY (16.7% [FI005]-73.3% [FI004]). Irrespective of strains tested or the identity/number of priming doses, ≥96.7% of children had hSBA titers ≥1:8 post-MenACWY-CRM booster dose. MenACWY-CRM and MenC-CRM elicited bactericidal antibodies and immunological memory against hypervirulent cc11 and cc334 MenC strains responsible for IMD outbreaks.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis , Anticorpos Antibacterianos , Humanos , Lactente , Vacinas Conjugadas
15.
Hum Vaccin Immunother ; 17(7): 2225-2231, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-33522380

RESUMO

The four-component meningococcal serogroup B vaccine (4CMenB) contains antigens present in the majority of meningococci causing invasive meningococcal disease (IMD) and may potentially offer protection against strains belonging to non-B serogroups.This study aimed to evaluate the ability of 4CMenB-induced antibodies to kill, in a human serum bactericidal assay (hSBA), non-B meningococci belonging to the main genotypes responsible for IMD in Italy.Meningococci, collected between 2015 and 2017, was characterized for PorA, FetA and sequence type, and for clonal complex. Twenty non-B isolates, representative of the most frequent genotypes, were molecularly characterized for 4CMenB antigens and tested in hSBA with sera from 4CMenB-vaccinated infants and adolescents.Among twenty isolates, eleven were serogroup C, five were Y, two W and two X. All isolates contained genes encoding for fHbp and NHBA antigens and four harbored the NadA full-length encoding gene. Positive hSBA titers were obtained against all serogroup W, X and Y isolates and against five serogroup C isolates.These data show that the 4CMenB vaccine can induce bactericidal antibodies against genetically representative meningococcal W, Y and X strains from Italy. For serogroup C, different susceptibilities to killing were observed for strains with similar antigenic repertoires.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis Sorogrupo B , Neisseria meningitidis , Adolescente , Antígenos de Bactérias/genética , Humanos , Lactente , Itália/epidemiologia , Infecções Meningocócicas/epidemiologia , Infecções Meningocócicas/prevenção & controle , Neisseria meningitidis/genética , Neisseria meningitidis Sorogrupo B/genética , Sorogrupo
16.
Pediatr Infect Dis J ; 40(2): e66-e71, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33060520

RESUMO

BACKGROUND: Neisseria meningitidis serogroup B (MenB) causes most meningitis outbreaks worldwide. We evaluated the ability of the 4-component MenB vaccine (4CMenB) to induce bactericidal activity against outbreak strains in adolescents. METHODS: Individual sera from 20 United States and 23 Chilean adolescents who received 2 doses of 4CMenB 2 months apart were assayed at prevaccination and 1 month after second dose using a human complement serum bactericidal antibody assay (hSBA) against a full or subset strain panel consisting of 14 MenB outbreak strains and 1 MenW hyperendemic strain collected between 2001 and 2017 in the United States, United Kingdom, and France. Bactericidal activity was determined as the percentage of adolescents with hSBA titer ≥1:4 or ≥1:8. RESULTS: One month after the second 4CMenB dose, antibodies from 65% to 100% of the US adolescents were able to kill 12 of 15 strains at 1:4 dilution. The remaining 3 strains were killed by 45%, 25%, and 15% of US adolescent sera. Similar percentages exhibited hSBA titers of ≥1:8. Across a subset of 4 strains, point estimates for the percentages of Chilean and US adolescents with hSBA titers of ≥1:4 after the second 4CMenB dose were similar (100% for strain M27703, 74% vs. 80% for M26312, 52% vs. 45% for M08 0240745), except for strain M39090 (91% vs. 65%). CONCLUSIONS: This study was the first to evaluate bactericidal activity elicited by a MenB vaccine against 15 outbreak strains. Two doses of 4CMenB elicited bactericidal activity against MenB outbreak strains and a hyperendemic MenW strain.


Assuntos
Anticorpos Antibacterianos/fisiologia , Antígenos de Bactérias/imunologia , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B/genética , Adolescente , Anticorpos Antibacterianos/sangue , Criança , Chile/epidemiologia , Feminino , França/epidemiologia , Humanos , Esquemas de Imunização , Masculino , Infecções Meningocócicas/epidemiologia , Neisseria meningitidis Sorogrupo B/imunologia , Sorogrupo , Reino Unido/epidemiologia , Estados Unidos/epidemiologia
17.
Hum Vaccin Immunother ; 17(9): 3230-3238, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33847225

RESUMO

Meningococcal serogroup B (MenB) accounts for an important proportion of invasive meningococcal disease (IMD). The 4-component vaccine against MenB (4CMenB) is composed of factor H binding protein (fHbp), neisserial heparin-binding antigen (NHBA), Neisseria adhesin A (NadA), and outer membrane vesicles of the New Zealand strain with Porin 1.4. A meningococcal antigen typing system (MATS) and a fully genomic approach, genetic MATS (gMATS), were developed to predict coverage of MenB strains by 4CMenB. We characterized 520 MenB invasive disease isolates collected over a 5-year period (January 2007-December 2011) from all Australian states/territories by multilocus sequence typing and estimated strain coverage by 4CMenB. The clonal complexes most frequently identified were ST-41/44 CC/Lineage 3 (39.4%) and ST-32 CC/ET-5 CC (23.7%). The overall MATS predicted coverage was 74.6% (95% coverage interval: 61.1%-85.6%). The overall gMATS prediction was 81.0% (lower-upper limit: 75.0-86.9%), showing 91.5% accuracy compared with MATS. Overall, 23.7% and 13.1% (MATS) and 26.0% and 14.0% (gMATS) of isolates were covered by at least 2 and 3 vaccine antigens, respectively, with fHbp and NHBA contributing the most to coverage. When stratified by year of isolate collection, state/territory and age group, MATS and gMATS strain coverage predictions were consistent across all strata. The high coverage predicted by MATS and gMATS indicates that 4CMenB vaccination may have an impact on the burden of MenB-caused IMD in Australia. gMATS can be used in the future to monitor variations in 4CMenB strain coverage over time and geographical areas even for non-culture confirmed IMD cases.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis Sorogrupo B , Antígenos de Bactérias/genética , Austrália/epidemiologia , Humanos , Infecções Meningocócicas/epidemiologia , Infecções Meningocócicas/prevenção & controle , Neisseria meningitidis Sorogrupo B/genética , Sorogrupo
18.
Infect Dis Ther ; 10(1): 307-316, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33185849

RESUMO

INTRODUCTION: Invasive meningococcal disease (IMD) is an important public health concern. In developed countries, most IMD is caused by meningococcal serogroup B (MenB) and two protein-based MenB vaccines are currently available: the four-component vaccine 4CMenB (Bexsero, GSK) and the bivalent vaccine MenB-FHbp (Trumenba, Pfizer). Genes encoding the 4CMenB vaccine antigens are also present in strains belonging to other meningococcal serogroups. METHODS: To evaluate the potential of 4CMenB vaccination to protect adolescents against non-MenB IMD, we tested the bactericidal activity of sera from immunized adolescents on 147 (127 European and 20 Brazilian) non-MenB IMD isolates, with a serum bactericidal antibody assay using human complement (hSBA). Serum pools were prepared using samples from randomly selected participants in various clinical trials, pre- and post-vaccination: 12 adolescents who received two doses of 4CMenB 2 months apart, and 10 adolescents who received a single dose of a MenACWY conjugate vaccine (as positive control). RESULTS: 4CMenB pre-immune sera killed 7.5% of the 147 non-MenB isolates at hSBA titers ≥ 1:4. In total, 91 (61.9%) tested isolates were killed by post-dose 2 pooled sera at hSBA titers ≥ 1:4, corresponding to 44/80 (55.0%) MenC, 26/35 (74.3%) MenW, and 21/32 (65.6%) MenY isolates killed. CONCLUSION: 4CMenB vaccination in adolescents induces bactericidal killing of non-MenB isolates, suggesting that mass vaccination could impact IMD due to serogroups other than MenB.

19.
J Exp Med ; 195(11): 1445-54, 2002 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-12045242

RESUMO

Neisseria meningitidis is a human pathogen, which, in spite of antibiotic therapy, is still a major cause of mortality due to sepsis and meningitis. Here we describe NadA, a novel surface antigen of N. meningitidis that is present in 52 out of 53 strains of hypervirulent lineages electrophoretic types (ET) ET37, ET5, and cluster A4. The gene is absent in the hypervirulent lineage III, in N. gonorrhoeae and in the commensal species N. lactamica and N. cinerea. The guanine/cytosine content, lower than the chromosome, suggests acquisition by horizontal gene transfer and subsequent limited evolution to generate three well-conserved alleles. NadA has a predicted molecular structure strikingly similar to a novel class of adhesins (YadA and UspA2), forms high molecular weight oligomers, and binds to epithelial cells in vitro supporting the hypothesis that NadA is important for host cell interaction. NadA induces strong bactericidal antibodies and is protective in the infant rat model suggesting that this protein may represent a novel antigen for a vaccine able to control meningococcal disease caused by three hypervirulent lineages.


Assuntos
Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Alelos , Sequência de Aminoácidos , Animais , Afinidade de Anticorpos , Especificidade de Anticorpos , Antígenos de Superfície/química , Antígenos de Superfície/metabolismo , Composição de Bases , Sequência de Bases , Western Blotting , Sequência Conservada/genética , Evolução Molecular , Citometria de Fluxo , Transferência Genética Horizontal/genética , Humanos , Soros Imunes/imunologia , Meningite Meningocócica/imunologia , Meningite Meningocócica/microbiologia , Meningite Meningocócica/prevenção & controle , Camundongos , Dados de Sequência Molecular , Neisseria meningitidis/genética , Neisseria meningitidis/crescimento & desenvolvimento , Neisseria meningitidis/patogenicidade , Ratos
20.
J Exp Med ; 197(6): 789-99, 2003 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-12642606

RESUMO

Sepsis and meningitis caused by serogroup B meningococcus are devastating diseases of infants and young adults, which cannot yet be prevented by vaccination. By genome mining, we discovered GNA1870, a new surface-exposed lipoprotein of Neisseria meningitidis that induces high levels of bactericidal antibodies. The antigen is expressed by all strains of N. meningitidis tested. Sequencing of the gene in 71 strains representative of the genetic and geographic diversity of the N. meningitidis population, showed that the protein can be divided into three variants. Conservation within each variant ranges between 91.6 to 100%, while between the variants the conservation can be as low as 62.8%. The level of expression varies between strains, which can be classified as high, intermediate, and low expressors. Antibodies against a recombinant form of the protein elicit complement-mediated killing of the strains that carry the same variant and induce passive protection in the infant rat model. Bactericidal titers are highest against those strains expressing high yields of the protein; however, even the very low expressors are efficiently killed. The novel antigen is a top candidate for the development of a new vaccine against meningococcus.


Assuntos
Antígenos de Bactérias/imunologia , Lipoproteínas/imunologia , Neisseria meningitidis/imunologia , Isoformas de Proteínas/imunologia , Vacinação , Adulto , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/classificação , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Sequência de Bases , Feminino , Genes Bacterianos , Humanos , Lactente , Lipoproteínas/genética , Lipoproteínas/metabolismo , Camundongos , Dados de Sequência Molecular , Neisseria meningitidis/metabolismo , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA