Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Stroke ; 55(3): 524-531, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38275116

RESUMO

BACKGROUND: Recent evidence from thrombolysis trials indicates the noninferiority of intravenous tenecteplase to intravenous alteplase with respect to good functional outcomes in patients with acute stroke. We examined whether the health-related quality of life (HRQOL) of patients with acute stroke differs by the type of thrombolysis treatment received. In addition, we examined the association between the modified Rankin Scale score 0 to 1 and HRQOL and patient-reported return to prebaseline stroke functioning at 90 days. METHODS: Data were from all patients included in the AcT trial (Alteplase Compared to Tenecteplase), a pragmatic, registry-linked randomized trial comparing tenecteplase with alteplase. HRQOL at 90-day post-randomization was assessed using the 5-item EuroQOL questionnaire (EQ5D), which consists of 5 items and a visual analog scale (VAS). EQ5D index values were estimated from the EQ5D items using the time tradeoff approach based on Canadian norms. Tobit regression and quantile regression models were used to evaluate the adjusted effect of tenecteplase versus alteplase treatment on the EQ5D index values and VAS score, respectively. The association between return to prebaseline stroke functioning and the modified Rankin Scale score 0 to 1 and HRQOL was quantified using correlation coefficient (r) with 95% CI. RESULTS: Of 1577 included in the intention-to-treat analysis patients, 1503 (95.3%) had complete data on the EQ5D. Of this, 769 (51.2%) were administered tenecteplase and 717 (47.7%) were female. The mean EQ5D VAS score and EQ5D index values were not significantly higher for those who received intravenous tenecteplase compared with those who received intravenous alteplase (P=0.10). Older age (P<0.01), more severe stroke assessed using the National Institutes of Health Stroke Scale (P<0.01), and longer stroke onset-to-needle time (P=0.004) were associated with lower EQ5D index and VAS scores. There was a strong association (r, 0.85 [95% CI, 0.81-0.89]) between patient-reported return to prebaseline functioning and modified Rankin Scale score 0 to 1 Similarly, there was a moderate association between return to prebaseline functioning and EQ5D index (r, 0.45 [95% CI, 0.40-0.49]) and EQ5D VAS scores (r, 0.42 [95% CI, 0.37-0.46]). CONCLUSIONS: Although there is no differential effect of thrombolysis type on patient-reported global HRQOL and EQ 5D-5L index values in patients with acute stroke, sex- and age-related differences in HRQOL were noted in this study. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03889249.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Feminino , Masculino , Ativador de Plasminogênio Tecidual , Tenecteplase/efeitos adversos , Fibrinolíticos , AVC Isquêmico/tratamento farmacológico , Qualidade de Vida , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/induzido quimicamente , Canadá , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/induzido quimicamente , Terapia Trombolítica , Resultado do Tratamento
2.
JAMA ; 331(7): 573-581, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38324415

RESUMO

Importance: Atrial cardiopathy is associated with stroke in the absence of clinically apparent atrial fibrillation. It is unknown whether anticoagulation, which has proven benefit in atrial fibrillation, prevents stroke in patients with atrial cardiopathy and no atrial fibrillation. Objective: To compare anticoagulation vs antiplatelet therapy for secondary stroke prevention in patients with cryptogenic stroke and evidence of atrial cardiopathy. Design, Setting, and Participants: Multicenter, double-blind, phase 3 randomized clinical trial of 1015 participants with cryptogenic stroke and evidence of atrial cardiopathy, defined as P-wave terminal force greater than 5000 µV × ms in electrocardiogram lead V1, serum N-terminal pro-B-type natriuretic peptide level greater than 250 pg/mL, or left atrial diameter index of 3 cm/m2 or greater on echocardiogram. Participants had no evidence of atrial fibrillation at the time of randomization. Enrollment and follow-up occurred from February 1, 2018, through February 28, 2023, at 185 sites in the National Institutes of Health StrokeNet and the Canadian Stroke Consortium. Interventions: Apixaban, 5 mg or 2.5 mg, twice daily (n = 507) vs aspirin, 81 mg, once daily (n = 508). Main Outcomes and Measures: The primary efficacy outcome in a time-to-event analysis was recurrent stroke. All participants, including those diagnosed with atrial fibrillation after randomization, were analyzed according to the groups to which they were randomized. The primary safety outcomes were symptomatic intracranial hemorrhage and other major hemorrhage. Results: With 1015 of the target 1100 participants enrolled and mean follow-up of 1.8 years, the trial was stopped for futility after a planned interim analysis. The mean (SD) age of participants was 68.0 (11.0) years, 54.3% were female, and 87.5% completed the full duration of follow-up. Recurrent stroke occurred in 40 patients in the apixaban group (annualized rate, 4.4%) and 40 patients in the aspirin group (annualized rate, 4.4%) (hazard ratio, 1.00 [95% CI, 0.64-1.55]). Symptomatic intracranial hemorrhage occurred in 0 patients taking apixaban and 7 patients taking aspirin (annualized rate, 1.1%). Other major hemorrhages occurred in 5 patients taking apixaban (annualized rate, 0.7%) and 5 patients taking aspirin (annualized rate, 0.8%) (hazard ratio, 1.02 [95% CI, 0.29-3.52]). Conclusions and Relevance: In patients with cryptogenic stroke and evidence of atrial cardiopathy without atrial fibrillation, apixaban did not significantly reduce recurrent stroke risk compared with aspirin. Trial Registration: ClinicalTrials.gov Identifier: NCT03192215.


Assuntos
Fibrilação Atrial , Cardiopatias , AVC Isquêmico , Pirazóis , Acidente Vascular Cerebral , Humanos , Feminino , Idoso , Masculino , Fibrilação Atrial/complicações , Fibrilação Atrial/tratamento farmacológico , Método Duplo-Cego , Canadá , Acidente Vascular Cerebral/prevenção & controle , Acidente Vascular Cerebral/complicações , Aspirina/efeitos adversos , Piridonas/efeitos adversos , Piridonas/administração & dosagem , Hemorragia/induzido quimicamente , Hemorragia/tratamento farmacológico , Cardiopatias/complicações , AVC Isquêmico/tratamento farmacológico , Anticoagulantes/efeitos adversos , Anticoagulantes/administração & dosagem , Hemorragias Intracranianas/induzido quimicamente
3.
Phys Med Biol ; 69(7)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38422545

RESUMO

Objective. Imaging of optical photons emitted from tissue during radiotherapy is a promising technique for real-time visualization of treatment delivery, offering applications in dose verification, treatment monitoring, and retrospective treatment plan comparison. This research aims to explore the feasibility of intensified imaging of tissue luminescence during proton therapy (PT), under both conventional and ultra-high dose rate (UHDR) conditions.Approach. Conventional and UHDR pencil beam scanning (PBS) PT irradiation of freshex vivoporcine tissue and tissue-mimicking plastic phantom was imaged using intensified complementary metal-oxide-semiconductor(CMOS) cameras. The optical emission from tissue was characterized during conventional irradiation using both blue and red-sensitive intensifiers to ensure adequate spectral coverage. Spectral characterization was performed using bandpass filters between the lens and sensor. Imaging of conventional proton fields (240 MeV, 10 nA) was performed at 100 Hz frame rate, while UHDR PBS proton delivery (250 MeV, 99 nA) was recorded at 1 kHz frame rate. Dependence of optical emission yield on proton energy was studied using an optical tissue-mimicking plastic phantom and a range shifter. Finally, we demonstrated fast beam tracking capability of fast camera towardsin vivomonitoring of FLASH PT.Main results. Under conventional treatment dose rates optical emission was imaged with single spot resolution. Spot profiles were found to agree with the treatment planning system calculation within >90% for all spectral bands and spot intensity was found to vary with spectral filtration. The resultant polychromatic emission presented a maximum intensity at 650 nm and decreasing signal at lower wavelengths, which is consistent with expected attenuation patterns of high fat and muscle tissue. For UHDR beam imaging, optical yield increased with higher proton energy. Imaging at 1 kHz allowed continuous monitoring of delivery during porcine tissue irradiation, with clear identification of individual dwell positions. The number of dwell positions matched the treatment plan in total and per row showing adequate temporal capability of iCMOS imaging.Significance. For the first time, this study characterizes optical emission from tissue during PT and demonstrates our capability of fast optical tracking of pencil proton beam on the tissue anatomy in both conventional and UHDR setting. Similar to the Cherenkov imaging in radiotherapy, this imaging modality could enable a seamless, independent validation of PT treatments.


Assuntos
Terapia com Prótons , Animais , Suínos , Terapia com Prótons/métodos , Prótons , Estudos Retrospectivos , Diagnóstico por Imagem , Imagens de Fantasmas
4.
Eur J Gen Pract ; 30(1): 2327367, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38497412

RESUMO

BACKGROUND: Atrial fibrillation (AF) is a common treatable risk factor for stroke. Screening for paroxysmal AF in general practice is difficult, but biomarkers might help improve screening strategies. OBJECTIVES: We investigated six blood biomarkers for predicting paroxysmal AF in general practice. METHODS: This was a pre-specified sub-study of the SCREEN-AF RCT done in Germany. Between 12/2017-03/2019, we enrolled ambulatory individuals aged 75 years or older with a history of hypertension but without known AF. Participants in the intervention group received active AF screening with a wearable patch, continuous ECG monitoring for 2x2 weeks and usual care in the control group. The primary endpoint was ECG-confirmed AF within six months after randomisation. High-sensitive Troponin I (hsTnI), brain natriuretic peptide (BNP), N-terminal pro-B-type natriuretic peptide (NT-pro BNP), N-terminal pro atrial natriuretic peptide (NT-ANP), mid-regional pro atrial natriuretic peptide (MR-pro ANP) and C-reactive protein (CRP) plasma levels were investigated at randomisation for predicting AF within six months after randomisation. RESULTS: Blood samples were available for 291 of 301 (96.7%) participants, including 8 with AF (3%). Five biomarkers showed higher median results in AF-patients: BNP 78 vs. 41 ng/L (p = 0.012), NT-pro BNP 273 vs. 186 ng/L (p = 0.029), NT-proANP 4.4 vs. 3.5 nmol/L (p = 0.027), MR-pro ANP 164 vs. 125 pmol/L (p = 0.016) and hsTnI 7.4 vs. 3.9 ng/L (p = 0.012). CRP levels were not different between groups (2.8 vs 1.9 mg/L, p = 0.1706). CONCLUSION: Natriuretic peptide levels and hsTnI are higher in patients with AF than without and may help select patients for AF screening, but larger trials are needed.


BNP, NT-pro BNP, NT-ANP and MR-pro ANP and hsTnI levels are higher in patients with AF than without AFWith a sensitivity at 100%, BNP had the highest specificity of 60% (BNP level 50.1ng/L), followed by NT-pro BNP with a specificity of 53% (179ng/l).


Assuntos
Fibrilação Atrial , Acidente Vascular Cerebral , Humanos , Fibrilação Atrial/diagnóstico , Fator Natriurético Atrial , Biomarcadores , Alemanha
5.
Int J Radiat Oncol Biol Phys ; 119(4): 1317-1325, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552990

RESUMO

PURPOSE: In this study, a C-series linear accelerator was configured to enable rapid and reliable conversion between the production of conventional electron beams and an ultrahigh-dose-rate (UHDR) electron beamline to the treatment room isocenter for FLASH radiation therapy. Efforts to tune the beam resulted in a consistent, stable UHDR beamline. METHODS AND MATERIALS: The linear accelerator was configured to allow for efficient switching between conventional and modified electron output modes within 2 minutes. Additions to the air system allow for retraction of the x-ray target from the beamline when the 10 MV photon mode is selected. With the carousel set to an empty port, this grants access to the higher current pristine electron beam normally used to produce clinical photon fields. Monitoring signals related to the automatic frequency control system allows for tuning of the waveguide while the machine is in a hold state so a stable beam is produced from the initial pulse. A pulse counting system implemented on an field-programmable gate array-based controller platform controls the delivery to a desired number of pulses. Beam profiles were measured with Gafchromic film. Pulse-by-pulse dosimetry was measured using a custom electrometer designed around the EDGE diode. RESULTS: This method reliably produces a stable UHDR electron beam. Open-field measurements of the 16-cm full-width, half-maximum gaussian beam saw average dose rates of 432 Gy/s at treatment isocenter. Pulse overshoots were limited and ramp up was eliminated. Over the last year, there have been no recorded incidents that resulted in machine downtime due to the UHDR conversions. CONCLUSIONS: Stable 10 MeV UHDR beams were generated to produce an average dose rate of 432 Gy/s at the treatment room isocenter. With a reliable pulse-counting beam control system, consistent doses can be delivered for FLASH experiments with the ability to accommodate a wide range of field sizes, source-to-surface distances, and other experimental apparatus that may be relevant for future clinical translation.


Assuntos
Elétrons , Aceleradores de Partículas , Fótons , Aceleradores de Partículas/instrumentação , Elétrons/uso terapêutico , Fótons/uso terapêutico , Desenho de Equipamento , Dosagem Radioterapêutica , Fatores de Tempo , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/métodos
6.
Med Phys ; 51(8): 5754-5763, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38598093

RESUMO

BACKGROUND: While careful planning and pre-treatment checks are performed to ensure patient safety during external beam radiation therapy (EBRT), inevitable daily variations mean that in vivo dosimetry (IVD) is the only way to attain the true delivered dose. Several countries outside the US require daily IVD for quality assurance. However, elsewhere, the manual labor and time considerations of traditional in vivo dosimeters may be preventing frequent use of IVD in the clinic. PURPOSE: This study expands upon previous research using plastic scintillator discs for optical dosimetry for electron therapy treatments. We present the characterization of scintillator discs for in vivo x-ray dosimetry and describe additional considerations due to geometric complexities. METHODS: Plastic scintillator discs were coated with reflective white paint on all sides but the front surface. An anti-reflective, matte coating was applied to the transparent face to minimize specular reflection. A time-gated iCMOS camera imaged the discs under various irradiation conditions. In post-processing, background-subtracted images of the scintillators were fit with Gaussian-convolved ellipses to extract several parameters, including integral output, and observation angle. RESULTS: Dose linearity and x-ray energy independence were observed, consistent with ideal characteristics for a dosimeter. Dose measurements exhibited less than 5% variation for incident beam angles between 0° and 75° at the anterior surface and 0-60 ∘ $^\circ $ at the posterior surface for exit beam dosimetry. Varying the angle between the disc surface and the camera lens did not impact the integral output for the same dose up to 55°. Past this point, up to 75°, there is a sharp falloff in response; however, a correction can be used based on the detected width of the disc. The reproducibility of the integral output for a single disc is 2%, and combined with variations from the gantry angle, we report the accuracy of the proposed scintillator disc dosimeters as ±5.4%. CONCLUSIONS: Plastic scintillator discs have characteristics that are well-suited for in vivo optical dosimetry for x-ray radiotherapy treatments. Unlike typical point dosimeters, there is no inherent readout time delay, and an optical recording of the measurement is saved after treatment for future reference. While several factors influence the integral output for the same dose, they have been quantified here and may be corrected in post-processing.


Assuntos
Fótons , Contagem de Cintilação , Fótons/uso terapêutico , Contagem de Cintilação/instrumentação , Fatores de Tempo , Radiometria/instrumentação , Dosagem Radioterapêutica , Humanos , Radioterapia/métodos , Radioterapia/instrumentação
7.
Phys Med Biol ; 69(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39084661

RESUMO

Objective. The FLASH effect can potentially be used to improve the therapeutic ratio of radiotherapy (RT) through delivery of Ultra-high-dose-rate (UHDR) irradiation. Research is actively being conducted to translate UHDR-RT and for this purpose the Mobetron is capable of producing electron beams at both UHDR and conventional dose rates for FLASH research and translation. This work presents commissioning of an UHDR Mobetron with end-to-end tests developed for preclinical research.Approach. UHDR electron beams were commissioned with an efficient approach utilizing a 3D-printed water tank and film to fully characterize beam characteristics and dependences on field size, pulse width (PW) and pulse repetition frequency (PRF). This commissioning data was used to implement a beam model using the GAMOS Monte Carlo toolkit for the preclinical research. Then, the workflow for preclinical FLASH irradiation was validated with end-to-end tests delivered to a 3D-printed mouse phantom with internal inhomogeneities.Main results.PDDs, profiles and output factors acquired with radiochromic films were precisely measured, with a PRF that showed little effect on the UHDR beam energy and spatial characteristics. Increasing PW reduced theDmaxand R50by 2.08 mmµs-1and 1.28 mmµs-1respectively. An end-to-end test of the preclinical research workflow showed that both profiles in head-foot and lateral directions were in good agreement with the MC calculations for the heterogeneous 3D printed mouse phantom with Gamma index above 93% for 2 mm/2% criteria, and 99% for 3 mm/3%.Significance. The UHDR Mobetron is a versatile tool for FLASH preclinical research and this comprehensive beam model and workflow was validated to meet the requirements for conducting translational FLASH research.


Assuntos
Elétrons , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Método de Monte Carlo , Doses de Radiação , Camundongos , Animais
8.
Med Phys ; 51(8): 5738-5745, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762909

RESUMO

BACKGROUND: Ultra-high-dose-rate (UHDR) electron beams have been commonly utilized in FLASH studies and the translation of FLASH Radiotherapy (RT) to the clinic. The EDGE diode detector has potential use for UHDR dosimetry albeit with a beam energy dependency observed. PURPOSE: The purpose is to present the electron beam response for an EDGE detector in dependence on beam energy, to characterize the EDGE detector's response under UHDR conditions, and to validate correction factors derived from the first detailed Monte Carlo model of the EDGE diode against measurements, particularly under UHDR conditions. METHODS: Percentage depth doses (PDDs) for the UHDR Mobetron were measured with both EDGE detectors and films. A detailed Monte Carlo (MC) model of the EDGE detector has been configured according to the blueprint provided by the manufacturer under an NDA agreement. Water/silicon dose ratios of EDGE detector for a series of mono-energetic electron beams have been calculated. The dependence of the water/silicon dose ratio on depth for a FLASH relevant electron beam was also studied. An analytical approach for the correction of PDD measured with EDGE detectors was established. RESULTS: Water/silicon dose ratio decreased with decreasing electron beam energy. For the Mobetron 9 MeV UHDR electron beam, the ratio decreased from 1.09 to 1.03 in the build-up region, maintained in range of 0.98-1.02 at the fall-off region and raised to a plateau in value of 1.08 at the tail. By applying the corrections, good agreement between the PDDs measured by the EDGE detector and those measured with film was achieved. CONCLUSIONS: Electron beam response of an UHDR capable EDGE detector was derived from first principles utilizing a sophisticated MC model. An analytical approach was validated for the PDDs of UHDR electron beams. The results demonstrated the capability of EDGE detector in measuring PDDs of UHDR electron beams.


Assuntos
Elétrons , Método de Monte Carlo , Radiometria/instrumentação , Dosímetros de Radiação , Doses de Radiação
9.
Med Phys ; 51(7): 5109-5118, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38493501

RESUMO

BACKGROUND: FLASH radiotherapy based on ultra-high dose rate (UHDR) is actively being studied by the radiotherapy community. Dedicated UHDR electron devices are currently a mainstay for FLASH studies. PURPOSE: To present the first Monte Carlo (MC) electron beam model for the UHDR capable Mobetron (FLASH-IQ) as a dose calculation and treatment planning platform for preclinical research and FLASH-radiotherapy (RT) clinical trials. METHODS: The initial beamline geometry of the Mobetron was provided by the manufacturer, with the first-principal implementation realized in the Geant4-based GAMOS MC toolkit. The geometry and electron source characteristics, such as energy spectrum and beamline parameters, were tuned to match the central-axis percentage depth dose (PDD) and lateral profiles for the pristine beam measured during machine commissioning. The thickness of the small foil in secondary scatter affected the beam model dominantly and was fine tuned to achieve the best agreement with commissioning data. Validation of the MC beam modeling was performed by comparing the calculated PDDs and profiles with EBT-XD radiochromic film measurements for various combinations of applicators and inserts. RESULTS: The nominal 9 MeV electron FLASH beams were best represented by a Gaussian energy spectrum with mean energy of 9.9 MeV and variance (σ) of 0.2 MeV. Good agreement between the MC beam model and commissioning data were demonstrated with maximal discrepancy < 3% for PDDs and profiles. Hundred percent gamma pass rate was achieved for all PDDs and profiles with the criteria of 2 mm/3%. With the criteria of 2 mm/2%, maximum, minimum and mean gamma pass rates were (100.0%, 93.8%, 98.7%) for PDDs and (100.0%, 96.7%, 99.4%) for profiles, respectively. CONCLUSIONS: A validated MC beam model for the UHDR capable Mobetron is presented for the first time. The MC model can be utilized for direct dose calculation or to generate beam modeling input required for treatment planning systems for FLASH-RT planning. The beam model presented in this work should facilitate translational and clinical FLASH-RT for trials conducted on the Mobetron FLASH-IQ platform.


Assuntos
Elétrons , Método de Monte Carlo , Aceleradores de Partículas , Dosagem Radioterapêutica , Elétrons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Doses de Radiação
10.
Adv Radiat Oncol ; 9(6): 101492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38711960

RESUMO

Purpose: Ultra High Dose-Rate (UHDR) radiation has been reported to spare normal tissue, compared with Conventional Dose-Rate (CDR) radiation. However, important work remains to be done to improve the reproducibility of the FLASH effect. A better understanding of the biologic factors that modulate the FLASH effect may shed light on the mechanism of FLASH sparing. Here, we evaluated whether sex and/or the use of 100% oxygen as a carrier gas during irradiation contribute to the variability of the FLASH effect. Methods and Materials: C57BL/6 mice (24 male, 24 female) were anesthetized using isoflurane mixed with either room air or 100% oxygen. Subsequently, the mice received 27 Gy of either 9 MeV electron UHDR or CDR to a 1.6 cm2 diameter area of the right leg skin using the Mobetron linear accelerator. The primary postradiation endpoint was time to full thickness skin ulceration. In a separate cohort of mice (4 male, 4 female), skin oxygenation was measured using PdG4 Oxyphor under identical anesthesia conditions. Results: Neither supplemental oxygen nor sex affected time to ulceration in CDR irradiated mice. In the UHDR group, skin damage occured earlier in male and female mice that received 100% oxygen compared room air and female mice ulcerated sooner than male mice. However, there was no significant difference in time to ulceration between male and female UHDR mice that received room air. Oxygen measurements showed that tissue oxygenation was significantly higher when using 100% oxygen as the anesthesia carrier gas than when using room air, and female mice showed higher levels of tissue oxygenation than male mice under 100% oxygen. Conclusions: The skin FLASH sparing effect is significantly reduced when using oxygen during anesthesia rather than room air. FLASH sparing was also reduced in female mice compared to male mice. Both tissue oxygenation and sex are likely sources of variability in UHDR studies. These results suggest an oxygen-based mechanism for FLASH, as well as a key role for sex in the FLASH skin sparing effect.

11.
JAMA Neurol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133474

RESUMO

Importance: Approximately 10% to 15% of ischemic strokes are associated with cancer; cancer-associated stroke, particularly when cryptogenic, is associated with high rates of recurrent stroke and major bleeding. Limited data exist on the safety and efficacy of different antithrombotic strategies in patients with cancer and cryptogenic stroke. Objective: To compare apixaban vs aspirin for the prevention of adverse clinical outcomes in patients with history of cancer and cryptogenic stroke. Design, Setting, and Participants: Post hoc analysis of data from 1015 patients with a recent cryptogenic stroke and biomarker evidence of atrial cardiopathy in the Atrial Cardiopathy and Antithrombotic Drugs in Prevention After Cryptogenic Stroke (ARCADIA) trial, a multicenter, randomized, double-blind clinical trial conducted from 2018 to 2023 at 185 stroke centers in North America. Data analysis was performed from October 15, 2023, to May 23, 2024. Exposures: Oral apixaban, 5 mg (or 2.5 mg if criteria met), twice daily vs oral aspirin, 81 mg, once daily. Subgroups of patients with and without cancer at baseline were examined. Main Outcomes and Measures: The primary outcome for this post hoc analysis was a composite of major ischemic or major hemorrhagic events. Major ischemic events were recurrent ischemic stroke, myocardial infarction, systemic embolism, and symptomatic deep vein thrombosis or pulmonary embolism. Major hemorrhagic events included symptomatic intracranial hemorrhage and any major extracranial hemorrhage. Results: Among 1015 participants (median [IQR] age, 68 [60-76] years; 551 [54.3%] female), 137 (13.5%) had a history of cancer. The median (IQR) follow-up was 1.5 (0.6-2.5) years for patients with history of cancer and 1.5 (0.6-3.0) years for those without history of cancer. Participants with history of cancer, compared with those without history of cancer, had a higher risk of major ischemic or major hemorrhagic events (hazard ratio [HR], 1.73; 95% CI, 1.10-2.71). Among those with history of cancer, 8 of 61 participants (13.1%) randomized to apixaban and 16 of 76 participants (21.1%) randomized to aspirin had a major ischemic or major hemorrhagic event; however, the risk was not significantly different between groups (HR, 0.61; 95% CI, 0.26-1.43). Comparing participants randomized to apixaban vs aspirin among those with cancer, events included recurrent stroke (5 [8.2%] vs 9 [11.8%]), major ischemic events (7 [11.5%] vs 14 [18.4%]), and major hemorrhagic events (1 [1.6%] vs 2 [2.6%]). Conclusions and Relevance: Among participants in the ARCADIA trial with history of cancer, the risk of major ischemic and hemorrhagic events did not differ significantly with apixaban compared with aspirin. Trial Registration: ClinicalTrials.gov Identifier: NCT03192215.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA