Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Adv ; 9(9): eade1112, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36857447

RESUMO

Natural methane (CH4) emissions from aquatic ecosystems may rise because of human-induced climate warming, although the magnitude of increase is highly uncertain. Using an exceptionally large CH4 flux dataset (~19,000 chamber measurements) and remotely sensed information, we modeled plot- and landscape-scale wetland CH4 emissions from the Prairie Pothole Region (PPR), North America's largest wetland complex. Plot-scale CH4 emissions were driven by hydrology, temperature, vegetation, and wetland size. Historically, landscape-scale PPR wetland CH4 emissions were largely dependent on total wetland extent. However, regardless of future wetland extent, PPR CH4 emissions are predicted to increase by two- or threefold by 2100 under moderate or severe warming scenarios, respectively. Our findings suggest that international efforts to decrease atmospheric CH4 concentrations should jointly account for anthropogenic and natural emissions to maintain climate mitigation targets to the end of the century.

2.
Sci Total Environ ; 533: 391-409, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26172606

RESUMO

Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased methane (CH4) emissions associated with restoration may outweigh potential benefits. A comprehensive, 4-year study of 119 wetland catchments was conducted in the Prairie Pothole Region of the north-central U.S. to assess the effects of land use on greenhouse gas (GHG) fluxes and soil properties. Results showed that the effects of land use on GHG fluxes and abiotic soil properties differed with respect to catchment zone (upland, wetland), wetland classification, geographic location, and year. Mean CH4 fluxes from the uplands were predictably low (<0.02 g CH4 m(-2) day(-1)), while wetland zone CH4 fluxes were much greater (<0.001-3.9 g CH4 m(-2) day(-1)). Mean cumulative seasonal CH4 fluxes ranged from roughly 0-650 g CH4 m(-2), with an overall mean of approximately 160 g CH4 m(-2). These maximum cumulative CH4 fluxes were nearly 3 times as high as previously reported in North America. The overall magnitude and variability of N2O fluxes from this study (<0.0001-0.0023 g N2O m(-2) day(-1)) were comparable to previously reported values. Results suggest that soil organic carbon is lost when relatively undisturbed catchments are converted for agriculture, and that when non-drained cropland catchments are restored, CH4 fluxes generally are not different than the pre-restoration baseline. Conversely, when drained cropland catchments are restored, CH4 fluxes are noticeably higher. Consequently, it is important to consider the type of wetland restoration (drained, non-drained) when assessing restoration benefits. Results also suggest that elevated N2O fluxes from cropland catchments likely would be reduced through restoration. The overall variability demonstrated by this study was consistent with findings of other wetland investigations and underscores the difficulty in quantifying the GHG balance of wetland systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA