Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762625

RESUMO

Microglia, a resident immune cell of the central nervous system (CNS), play a pivotal role in facilitating neurovascular development through mechanisms that are not fully understood. Previous reports indicate a role for microglia in regulating astrocyte density. This current work resolves the mechanism through which microglia facilitate astrocyte spatial patterning and superficial vascular bed formation in the neuroretina during development. Ablation of microglia increased astrocyte density and altered spatial patterning. Mechanistically, we show that microglia regulate the formation of the spatially organized astrocyte template required for subsequent vascular growth, through the complement C3/C3aR axis during neuroretinal development. Lack of C3 or C3aR hindered the developmental phagocytic removal of astrocyte bodies and resulted in increased astrocyte density. In addition, increased astrocyte density was associated with elevated proangiogenic extracellular matrix gene expression in C3- and C3aR-deficient retinas, resulting in increased vascular density. These data demonstrate that microglia regulate developmental astrocyte and vascular network spatial patterning in the neuroretina via the complement axis.


Assuntos
Complemento C3 , Microglia , Astrócitos , Complemento C3/genética , Retina
2.
Mol Ther ; 29(7): 2281-2293, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-33744470

RESUMO

Abnormal cholesterol/lipid homeostasis is linked to neurodegenerative conditions such as age-related macular degeneration (AMD), which is a leading cause of blindness in the elderly. The most prevalent form, termed "dry" AMD, is characterized by pathological cholesterol accumulation beneath the retinal pigment epithelial (RPE) cell layer and inflammation-linked degeneration in the retina. We show here that the cholesterol-regulating microRNA miR-33 was elevated in the RPE of aging mice. Expression of the miR-33 target ATP-binding cassette transporter (ABCA1), a cholesterol efflux pump genetically linked to AMD, declined reciprocally in the RPE with age. In accord, miR-33 modulated ABCA1 expression and cholesterol efflux in human RPE cells. Subcutaneous delivery of miR-33 antisense oligonucleotides (ASO) to aging mice and non-human primates fed a Western-type high fat/cholesterol diet resulted in increased ABCA1 expression, decreased cholesterol accumulation, and reduced immune cell infiltration in the RPE cell layer, accompanied by decreased pathological changes to RPE morphology. These findings suggest that miR-33 targeting may decrease cholesterol deposition and ameliorate AMD initiation and progression.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Inflamação/terapia , Degeneração Macular/terapia , MicroRNAs/antagonistas & inibidores , Fenótipo , Epitélio Pigmentado da Retina/metabolismo , Animais , Inflamação/etiologia , Inflamação/patologia , Macaca fascicularis , Degeneração Macular/etiologia , Degeneração Macular/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Oligonucleotídeos Antissenso/genética
3.
Clin Immunol ; 214: 108391, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32229292

RESUMO

Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss among the elderly population. Genetic studies in susceptible individuals have linked this ocular disease to deregulated complement activity that culminates in increased C3 turnover, retinal inflammation and photoreceptor loss. Therapeutic targeting of C3 has therefore emerged as a promising strategy for broadly intercepting the detrimental proinflammatory consequences of complement activation in the retinal tissue. In this regard, a PEGylated second-generation derivative of the compstatin family of C3-targeted inhibitors is currently in late-stage clinical development as a treatment option for geographic atrophy, an advanced form of AMD which lacks approved therapy. While efficacy has been strongly suggested in phase 2 clinical trials, crucial aspects still remain to be defined with regard to the ocular bioavailability, tissue distribution and residence, and dosing frequency of such inhibitors in AMD patients. Here we report the intraocular distribution and pharmacokinetic profile of the fourth-generation compstatin analog, Cp40-KKK in cynomolgus monkeys following a single intravitreal injection. Using a sensitive surface plasmon resonance (SPR)-based competition assay and ELISA, we have quantified both the amount of inhibitor and the concentration of C3 retained in the vitreous of Cp40-KKK-injected animals. Cp40-KKK displays prolonged intraocular residence, being detected at C3-saturating levels for over 3 months after a single intravitreal injection. Moreover, we have probed the distribution of Cp40-KKK within the ocular tissue by means of immunohistochemistry and highly specific anti-Cp40-KKK antibodies. Both C3 and Cp40-KKK were detected in the retinal tissue of inhibitor-injected animals, with prominent co-localization in the choroid one-month post intravitreal injection. These results attest to the high retinal tissue penetrance and target-driven distribution of Cp40-KKK. Given its subnanomolar binding affinity and prolonged ocular residence, Cp40-KKK constitutes a promising drug candidate for ocular pathologies underpinned by deregulated C3 activation.


Assuntos
Complemento C3/antagonistas & inibidores , Olho/química , Idoso , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Injeções Intravítreas , Macaca fascicularis , Retina/química , Fatores de Tempo , Distribuição Tecidual
4.
Development ; 140(9): 2050-60, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23571221

RESUMO

Pathologies of retinal blood vessels are among the major causes of blindness worldwide. A key cell type that regulates retinal vascular development is the astrocyte. Generated extrinsically to the retina, astrocytes migrate into the retina through the optic nerve head. Even though there is a strong correlation between astrocyte distribution and retinal vascular development, the factors that guide astrocytes into the retina remain unclear. In this study, we show that astrocytes migrate within a laminin-containing basement membrane - the inner limiting membrane. Genetic deletion of the laminin ß2 and γ3 chains affects astrocyte migration and spatial distribution. We show that laminins act as haptotactic factors in vitro in an isoform-specific manner, inducing astrocyte migration and promoting astrocyte differentiation. The addition of exogenous laminins to laminin-null retinal explants rescues astrocyte migration and spatial patterning. Furthermore, we show that the loss of laminins reduces ß1 integrin expression in astrocytes. Culturing laminin-null retinal astrocytes on laminin substrates restores focal localization of ß1 integrin. Finally, we show that laminins containing ß2 and γ3 chains regulate subsequent retinal blood vessel growth and maintain vascular integrity. These in vivo and in vitro studies demonstrate clearly that laminins containing ß2 and γ3 chains are indispensable for migration and spatial organization of astrocytes and that they play a crucial role during retinal angiogenesis in vivo.


Assuntos
Astrócitos/metabolismo , Movimento Celular , Neovascularização da Córnea/metabolismo , Laminina/metabolismo , Retina/citologia , Animais , Astrócitos/citologia , Comunicação Celular , Diferenciação Celular , Neovascularização da Córnea/genética , Deleção de Genes , Imuno-Histoquímica , Integrina beta1/genética , Integrina beta1/metabolismo , Laminina/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Retina/metabolismo
5.
Cells ; 12(13)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37443787

RESUMO

Retinal detachment (RD) is a neurodegenerative blinding disease caused by plethora of clinical conditions. RD is characterized by the physical separation of retina from the underlying retinal pigment epithelium (RPE), eventually leading to photoreceptor cell death, inflammation, and vision loss. Albeit the activation of complement plays a critical role in the pathogenesis of RD, the retinal cellular source for complement production remains elusive. Here, using C3 tdTomato reporter mice we show that retinal injury upregulates C3 expression, specifically in Müller cells. Activation of the complement cascade results in the generation of proinflammatory cleaved products, C3a and C5a, that bind C3aR and C5aR1, respectively. Our flow cytometry data show that retinal injury significantly upregulated C3aR and C5aR1 in microglia and resulted in the infiltration of peripheral immune cells. Loss of C3, C5, C3aR or C5aR1 reduced photoreceptor cell death and infiltration of microglia and peripheral immune cells into the sub-retinal space. These results indicate that C3/C3aR and C5/C5aR1 play a crucial role in eliciting photoreceptor degeneration and inflammatory responses in RD.


Assuntos
Células Ependimogliais , Descolamento Retiniano , Camundongos , Animais , Células Ependimogliais/patologia , Doenças Neuroinflamatórias , Células Fotorreceptoras/patologia , Morte Celular , Retina/metabolismo , Descolamento Retiniano/metabolismo , Proteínas do Sistema Complemento/metabolismo
6.
Free Radic Biol Med ; 178: 360-368, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843917

RESUMO

Late-stage dry age-related macular degeneration (AMD) or geographic atrophy (GA) is an irreversible blinding condition characterized by degeneration of retinal pigment epithelium (RPE) and the associated photoreceptors. Clinical and genetic evidence supports a role for dysfunctional lipid processing and accumulation of harmful oxidized lipids in the pathogenesis of GA. Using an oxidized low-density lipoprotein (ox-LDL)-induced RPE death assay, we screened and identified sterically-hindered phenol compounds with potent protective activities for RPE. The phenol-containing PPARγ agonist, troglitazone, protected against ox-LDL-induced RPE cell death, whereas other more potent PPARγ agonists did not protect RPE cells. Knockdown of PPARγ did not affect the protective activity of troglitazone in RPE, confirming the protective function is not due to the thiazolidine (TZD) group of troglitazone. Prototypical hindered phenol trolox and its analogs potently protected against ox-LDL-induced RPE cell death whereas potent antioxidants without the phenol group failed to protect RPE. Hindered phenols preserved lysosomal integrity against ox-LDL-induced damage and FITC-labeled trolox was localized to the lysosomes in RPE cells. Analogs of trolox inhibited reactive oxygen species (ROS) formation induced by ox-LDL uptake in a dose-dependent fashion and were effective at sub-micromolar concentrations. Treatment with trolox analog 2,2,5,7,8-pentamethyl-6-chromanol (PMC) significantly induced the expression of the lysosomal protein NPC-1 and reduced intracellular cholesterol level upon ox-LDL uptake. Our data indicate that the lysosomal-localized hindered phenols are uniquely potent in protecting the RPE against the toxic effects of ox-LDL, and may represent a novel pharmacotherapy to preserve the vision in patients with GA.


Assuntos
Lipoproteínas LDL , Epitélio Pigmentado da Retina , Células Epiteliais , Humanos , Fenóis , Pigmentos da Retina
7.
Invest Ophthalmol Vis Sci ; 57(11): 4704-12, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27607416

RESUMO

PURPOSE: Accumulation of oxidized phospholipids/lipoproteins with age is suggested to contribute to the pathogenesis of AMD. We investigated the effect of oxidized LDL (ox-LDL) on human RPE cells. METHODS: Primary human fetal RPE (hf-RPE) and ARPE-19 cells were treated with different doses of LDL or ox-LDL. Assessment of cell death was measured by lactate dehydrogenase release into the conditioned media. Barrier function of RPE was assayed by measuring transepithelial resistance. Lysosomal accumulation of ox-LDL was determined by immunostaining. Expression of CD36 was determined by RT-PCR; protein blot and function was examined by receptor blocking. NLRP3 inflammasome activation was assessed by RT-PCR, protein blot, caspase-1 fluorescent probe assay, and inhibitor assays. RESULTS: Treatment with ox-LDL, but not LDL, for 48 hours caused significant increase in hf-RPE and ARPE-19 (P < 0.001) cell death. Oxidized LDL treatment of hf-RPE cells resulted in a significant decrease in transepithelial resistance (P < 0.001 at 24 hours and P < 0.01 at 48 hours) relative to LDL-treated and control cells. Internalized ox-LDL was targeted to RPE lysosomes. Uptake of ox-LDL but not LDL significantly increased CD36 protein and mRNA levels by more than 2-fold. Reverse transcription PCR, protein blot, and caspase-1 fluorescent probe assay revealed that ox-LDL treatment induced NLRP3 inflammasome when compared with LDL treatment and control. Inhibition of NLRP3 activation using 10 µM isoliquiritigenin significantly (P < 0.001) inhibited ox-LDL induced cytotoxicity. CONCLUSIONS: These data are consistent with the concept that ox-LDL play a role in the pathogenesis of AMD by NLRP3 inflammasome activation. Suppression of NLRP3 inflammasome activation could attenuate RPE degeneration and AMD progression.


Assuntos
Antígenos CD36/metabolismo , Regulação da Expressão Gênica , Inflamassomos/metabolismo , Lipoproteínas LDL/metabolismo , Degeneração Macular/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Epitélio Pigmentado da Retina/metabolismo , Morte Celular , Linhagem Celular , Humanos , Immunoblotting , Degeneração Macular/genética , Degeneração Macular/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/biossíntese , Oxirredução , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/embriologia , Transdução de Sinais
8.
Invest Ophthalmol Vis Sci ; 55(8): 4747-58, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24994868

RESUMO

PURPOSE: To evaluate the mechanism of tamoxifen-induced cell death in human cultured RPE cells, and to investigate concurrent cell death mechanisms including pyroptosis, apoptosis, and necroptosis. METHODS: Human RPE cells were cultured until confluence and treated with tamoxifen; cell death was measured by detecting LDH release. Tamoxifen-induced cell death was further confirmed by 7-aminoactinomycin D (7-AAD) and annexin V staining. Lysosomal destabilization was assessed using lysosomal-associated membrane protein-1 (LAMP-1) and acridine orange staining. The roles of lysosomal enzymes cathepsin B and L were examined by blocking their activity. Caspase activity was evaluated by caspase-1, -3, -8, and -9 specific inhibition. Cells were primed with IL-1α and treated with tamoxifen; mature IL-1ß production was quantified via ELISA. Caspase activity was verified with the fluorochrome-labeled inhibitor of caspases (FLICA) probe specific for each caspase. Regulated cell necrosis or necroptosis was examined with 7-AAD and inhibition of receptor-interacting protein 1 (RIP1) kinase using necrostatin-1 (Nec-1). RESULTS: Cell death occurred within 2 hours of tamoxifen treatment of confluent RPE cells and was accompanied by lysosomal membrane permeabilization. Blockade of cathepsin B and L activity led to a significant decrease in cell death, indicating that lysosomal destabilization and cathepsin release occur prior to regulated cell death. Tamoxifen-induced toxicity was shown to occur through both caspase-dependent and caspase-independent cell death pathways. Treatment of RPE cells with caspase inhibitors and Nec-1 resulted in a near complete rescue from cell death. CONCLUSIONS: Tamoxifen-induced cell death occurs through concurrent regulated cell death mechanisms. Simultaneous inhibition of caspase-dependent and caspase-independent cell death pathways is required to protect cells from tamoxifen. Inhibition of upstream activators, such as the cathepsins, may represent a novel approach to block multiple cell death pathways.


Assuntos
Doenças Retinianas/induzido quimicamente , Epitélio Pigmentado da Retina/patologia , Tamoxifeno/toxicidade , Western Blotting , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Antagonistas de Estrogênios/toxicidade , Humanos , Interleucina-1beta/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos
9.
J Ophthalmic Vis Res ; 7(4): 316-27, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23503323

RESUMO

Retinal vasculature related pathologies account for a large proportion of global blindness. Choroidal neovascularization accompanying age-related macular degeneration is the largest cause of blindness in people over the age of 65 years, proliferative diabetic retinopathy is the main cause of acquired blindness in working adults, and retinopathy of prematurity (ROP) is the leading cause of acquired blindness in children. Given the great success in treating the first category of these conditions with anti-vascular endothelial growth factor (anti-VEGF) therapy, there is understandably considerable interest to employ this strategy to other retinal vascular disorders. Anti-VEGF therapy may not be the optimal course of action, as it may compromise neuronal survival; this is of particular concern when treating ROP where retinal neurogenesis is still not complete. Moreover, retinal neovascularization is preceded by alterations in the vascular wall extracellular matrix with concomitant reduction in mural cell adhesion. This produces vascular instability followed by the pathobiologic process of neovascularization. Thus, stabilizing mural cell-matrix interactions would be a prudent alternative for controlling retinal vascular pathologies. In this review, we will summarize the development of retinal angiogenesis focusing on the role of cell-matrix interaction in each step of the process. Our goal is to identify potential targets for regulating and maintaining normal vascular development and function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA