Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(23): 6572-6590, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37777480

RESUMO

Globally, oyster reef restoration is one of the most widely applied coastal restoration interventions. While reefs are focal points of processes tightly linked to the carbonate system such as shell formation and respiration, how these processes alter reef carbonate chemistry relative to the surrounding seawater is unclear. Moreover, coastal systems are increasingly impacted by coastal acidification, which may affect reef carbonate chemistry. Here, we characterized the growth of multiple constructed reefs as well as summer variations in pH and carbonate chemistry of reef-influenced seawater (in the middle of reefs) and ambient seawater (at locations ~50 m outside of reefs) to determine how reef chemistry was altered by the reef community and, in turn, impacts resident oysters. High frequency monitoring across three subtidal constructed reefs revealed reductions of daily mean and minimum pH (by 0.05-0.07 and 0.07-0.12 units, respectively) in seawater overlying reefs relative to ambient seawater (p < .0001). The proportion of pH measurements below 7.5, a threshold shown to negatively impact post-larval oysters, were 1.8×-5.2× higher in reef seawater relative to ambient seawater. Most reef seawater samples (83%) were reduced in total alkalinity relative to ambient seawater samples, suggesting community calcification was a key driver of modified carbonate chemistry. The net metabolic influence of the reef community resulted in reductions of CaCO3 saturation state in 78% of discrete samples, and juvenile oysters placed on reefs exhibited slower shell growth (p < .05) compared to oysters placed outside of reefs. While differences in survival were not detected, reef oysters may benefit from enhanced survival or recruitment at the cost of slowed growth rates. Nevertheless, subtidal restored reef communities modified seawater carbonate chemistry in ways that likely increased oyster vulnerability to acidification, suggesting that carbonate chemistry dynamics warrant consideration when determining site suitability for oyster restoration, particularly under continued climate change.


Assuntos
Ostreidae , Água do Mar , Animais , Água do Mar/química , Recifes de Corais , Estuários , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Carbonatos/química , Ostreidae/metabolismo
2.
Glob Chang Biol ; 29(8): 2092-2107, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36625070

RESUMO

Warming temperatures and diminishing dissolved oxygen (DO) concentrations are among the most pervasive drivers of global coastal change. While regions of the Northwest Atlantic Ocean are experiencing greater than average warming, the combined effects of thermal and hypoxic stress on marine life in this region are poorly understood. Populations of the northern bay scallop, Argopecten irradians irradians across the northeast United States have experienced severe declines in recent decades. This study used a combination of high-resolution (~1 km) satellite-based temperature records, long-term temperature and DO records, field and laboratory experiments, and high-frequency measures of scallop cardiac activity in an ecosystem setting to quantify decadal summer warming and assess the vulnerability of northern bay scallops to thermal and hypoxic stress across their geographic distribution. From 2003 to 2020, significant summer warming (up to ~0.2°C year-1 ) occurred across most of the bay scallop range. At a New York field site in 2020, all individuals perished during an 8-day estuarine heatwave that coincided with severe diel-cycling hypoxia. Yet at a Massachusetts site with comparable DO levels but lower daily mean temperatures, mortality was not observed. A 96-h laboratory experiment recreating observed daily temperatures of 25 or 29°C, and normoxia or hypoxia (22.2% air saturation), revealed a 120-fold increased likelihood of mortality in the 29°C-hypoxic treatment compared with control conditions, with scallop clearance rates also reduced by 97%. Cardiac activity measurements during a field deployment indicated that low DO and elevated daily temperatures modulate oxygen consumption rates and likely impact aerobic scope. Collectively, these findings suggest that concomitant thermal and hypoxic stress can have detrimental effects on scallop physiology and survival and potentially disrupt entire fisheries. Recovery of hypoxic systems may benefit vulnerable fisheries under continued warming.


Assuntos
Pesqueiros , Pectinidae , Humanos , Animais , Ecossistema , Hipóxia , New York
3.
J Phycol ; 59(4): 658-680, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36964950

RESUMO

Multiple species of the genus Dinophysis produce diarrhetic shellfish toxins (okadaic acid and Dinophysis toxins, OA/DTXs analogs) and/or pectenotoxins (PTXs). Only since 2008 have DSP events (illnesses and/or shellfish harvesting closures) become recognized as a threat to human health in the United States. This study characterized 20 strains representing five species of Dinophysis spp. isolated from three US coastal regions that have experienced DSP events: the Northeast/Mid-Atlantic, the Gulf of Mexico, and the Pacific Northwest. Using a combination of morphometric and DNA-based evidence, seven Northeast/Mid-Atlantic isolates and four Pacific Northwest isolates were classified as D. acuminata, a total of four isolates from two coasts were classified as D. norvegica, two isolates from the Pacific Northwest coast were identified as D. fortii, and three isolates from the Gulf of Mexico were identified as D. ovum and D. caudata. Toxin profiles of D. acuminata and D. norvegica varied by their geographical origin within the United States. Cross-regional comparison of toxin profiles was not possible with the other three species; however, within each region, distinct species-conserved profiles for isolates of D. fortii, D. ovum, and D. caudata were observed. Historical and recent data from various State and Tribal monitoring programs were compiled and compared, including maximum recorded cell abundances of Dinophysis spp., maximum concentrations of OA/DTXs recorded in commercial shellfish species, and durations of harvesting closures, to provide perspective regarding potential for DSP impacts to regional public health and shellfish industry.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Estados Unidos , Humanos , Toxinas Marinhas , Ácido Okadáico , Frutos do Mar/análise
4.
Environ Res ; 216(Pt 1): 114459, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181899

RESUMO

Brown tides caused by the pelagophyte Aureococcus anophagefferens have frequently occurred in the Bohai Sea since 2009 and have led to a dramatic collapse of the local scallop culture. To determine why brown tides occurred in the Bohai Sea rather than in other eutrophic coastal waters of China, phytoplankton communities and nutrients were evaluated and nutrient addition experiments were conducted in the Qinhuangdao coastal area. The concentration of dissolved organic nitrogen (DON) was nearly five times higher than that of dissolved inorganic nitrogen (DIN) during brown tides. High levels of phytoplankton biomass and nutrients were observed in the inshore waters, and the patterns of different nutrients were heterogeneous, which could be due to the uneven distribution of pelagophytes and non-brown tide phytoplankton populations (NBTP). The nutrient enrichment results indicated that the growth of the phytoplankton community was nitrogen-limited. Enrichment of DON, especially urea, could promote the growth of pelagophytes during the development stages of the brown tide. In brief, the results of this study imply that the unique nutrient profile (rich in DON but deficient in DIN) could support the outbreak of brown tides in the inshore waters of Qinhuangdao.


Assuntos
Fitoplâncton , Estramenópilas , Nitrogênio/análise , Nutrientes , Biomassa , China
5.
J Environ Sci (China) ; 124: 522-543, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182161

RESUMO

This study explored the effects of H2O2 on Cyanobacteria and non-target microbes using fluorometry, microscopy, flow cytometry, and high throughput DNA sequencing of the 16S rRNA gene during a series of mesocosm and whole-ecosystem experiments in a eutrophic pond in NY, USA. The addition of H2O2 (8 mg/L) significantly reduced Cyanobacteria concentrations during a majority of experiments (66%; 6 of 9) and significantly increased eukaryotic green and unicellular brown algae in 78% and 45% of experiments, respectively. While heterotrophic bacteria declined significantly following H2O2 addition in all experiments, bacteria indicative of potential fecal contamination (Escherichia coli, Enterococcus, fecal coliform bacteria) consistently and significantly increased in response to H2O2, evidencing a form of 'pollution swapping'. H2O2 more effectively reduced Cyanobacteria in enclosed mesocosms compared to whole-ecosystem applications. Ten whole-pond H2O2 applications over a two-year period temporarily reduced cyanobacterial levels but never reduced concentrations below bloom thresholds and populations always rebounded in two weeks or less. The bacterial phyla of Cyanobacteria, Actinobacteria, and Planctomycetes were the most negatively impacted by H2O2. Microcystis was always reduced by H2O2, as was the toxin microcystin, but Microcystis remained dominant even after repeated H2O2 treatments. Although H2O2 favored the growth of eukaryotic algae over potentially harmful Cyanobacteria, the inability of H2O2 to end cyanobacterial blooms in this eutrophic waterbody suggests it is a non-ideal mitigation approach in high biomass ecosystems and should be used judiciously due to potential negative impacts on non-target organisms and promotion of bacteria indicative of fecal contamination.


Assuntos
Cianobactérias , Microcystis , Ecossistema , Peróxido de Hidrogênio , Microcistinas , Lagoas , RNA Ribossômico 16S
6.
J Phycol ; 58(1): 146-160, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773248

RESUMO

The pelagophyte Aureococcus anophagefferens causes harmful brown tide blooms in marine embayments on three continents. Aureococcus anophagefferens was the first harmful algal bloom species to have its genome sequenced, an advance that evidenced genes important for adaptation to environmental conditions that prevail during brown tides. To expand the genomic tools available for this species, genomes for four strains were assembled, including three newly sequenced strains and one assembled from publicly available data. These genomes ranged from 57.11 to 73.62 Mb, encoding 13,191-17,404 potential proteins. All strains shared ~90% of their encoded proteins as determined by homology searches and shared most functional orthologs as determined by KEGG, although each strain also possessed coding sequences with unique functions. Like the original reference genome, the genomes assembled in this study possessed genes hypothesized to be important in bloom proliferation, including genes involved in organic compound metabolism and growth at low light. Cross-strain informatics and culture experiments suggest that the utilization of purines is a potentially important source of organic nitrogen for brown tides. Analyses of metatranscriptomes from a brown tide event demonstrated that use of a single genome yielded a lower read mapping percentage (~30% of library reads) as compared to a database generated from all available genomes (~43%), suggesting novel information about bloom ecology can be gained from expanding genomic space. This work demonstrates the continued need to sequence ecologically relevant algae to understand the genomic potential and their ecology in the environment.


Assuntos
Estramenópilas , Proliferação Nociva de Algas , Nitrogênio/metabolismo , Nutrientes , Estramenópilas/genética , Estramenópilas/metabolismo
7.
J Fish Biol ; 99(1): 153-163, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33624835

RESUMO

Research evaluating the toxicity of the harmful dinoflagellate Cochlodinium (a.k.a. Margalefidinium) polykrikoides has been dominated by acute bioassays while the sublethal effects remain less well understood. This study examined the sublethal effects of C. polykrikoides exposure on the feeding behavior of larval estuarine fish. Sheepshead minnow (Cyprinodon variegatus) larvae were used in feeding experiments which assessed the total consumption of zooplankton prey (i.e., Artemia nauplii) over defined time periods. Larvae exposed to intermediate concentrations (i.e., 102 cells ml-1 ) of clonal cultures of C. polykrikoides saw statistically significant reductions (range = 10%-81%) in the Artemia consumed compared to controls (i.e., filtered seawater, culture media or nontoxin producing dinoflagellate). These reductions were found independent of whether the larvae were fed or starved prior to experimentation. As these concentrations are similar to those typically found during mild blooms or at the periphery of dense blooms, these findings have significant implications for the feeding behavior of ichthyoplankton.


Assuntos
Cyprinidae , Dinoflagellida , Peixes Listrados , Animais , Comportamento Alimentar , Proliferação Nociva de Algas , Larva
8.
Proc Natl Acad Sci U S A ; 114(19): 4975-4980, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28439007

RESUMO

Global ocean temperatures are rising, yet the impacts of such changes on harmful algal blooms (HABs) are not fully understood. Here we used high-resolution sea-surface temperature records (1982 to 2016) and temperature-dependent growth rates of two algae that produce potent biotoxins, Alexandrium fundyense and Dinophysis acuminata, to evaluate recent changes in these HABs. For both species, potential mean annual growth rates and duration of bloom seasons significantly increased within many coastal Atlantic regions between 40°N and 60°N, where incidents of these HABs have emerged and expanded in recent decades. Widespread trends were less evident across the North Pacific, although regions were identified across the Salish Sea and along the Alaskan coastline where blooms have recently emerged, and there have been significant increases in the potential growth rates and duration of these HAB events. We conclude that increasing ocean temperature is an important factor facilitating the intensification of these, and likely other, HABs and thus contributes to an expanding human health threat.


Assuntos
Dinoflagellida/crescimento & desenvolvimento , Eutrofização , Aquecimento Global , Ácido Okadáico/metabolismo , Saxitoxina/biossíntese , Oceano Atlântico , Humanos , Ácido Okadáico/toxicidade , Oceano Pacífico , Saxitoxina/toxicidade
9.
Proc Biol Sci ; 286(1904): 20190340, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31161913

RESUMO

Since the early 1990s, ocean temperatures have increased and blooms of the icthyotoxic dinoflagellate Cochlodinium polykrikoides (a.k.a. Margalefidinium polykrikoides) have become more widespread across the Northern Hemisphere. This study used high-resolution (1-30 km), satellite-based sea surface temperature records since 1982 to model trends in growth and bloom season length for strains of C. polykrikoides inhabiting North American and East Asian coastlines to understand how warming has altered blooms in these regions. Methods provided approximately 180× greater spatial resolution than previous studies of the impacts of warming on harmful algae, providing novel insight into near shore, coastal environments. Along the US East Coast, significant increases in potential growth rates and bloom season length for North American ribotypes were observed with bloom-favourable conditions becoming established earlier and persisting longer from Chesapeake Bay through Cape Cod, areas where blooms have become newly established and/or intensified this century. Within the Sea of Japan, modelled mean potential growth rates and bloom season length of East Asian ribotypes displayed a significant positive correlation with rising sea surface temperatures since 1982, a period during which observed maximal cell densities of C. polykrikoides blooms have significantly increased. Results suggest that warming has contributed, in part, to altering the phenology of C. polykrikoides populations, potentially expanding its realized niche in temperate zones of the Northern Hemisphere.


Assuntos
Dinoflagellida/fisiologia , Monitoramento Ambiental , Proliferação Nociva de Algas , Água do Mar , Temperatura , Mudança Climática , Simulação por Computador , Dinoflagellida/crescimento & desenvolvimento , Japão , Oceanos e Mares , República da Coreia , Estações do Ano , Estados Unidos
10.
Mol Ecol ; 28(17): 4065-4076, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31468654

RESUMO

The nonmotile, spherical, picoplanktonic (2-µm-sized) pelagophyte Aureococcus anophagefferens has caused numerous harmful blooms ("brown tides") across global marine ecosystems. Blooms have developed along the east coast of the USA since 1985, a limited number of times in South Africa around 1997, and frequently in China since 2009. As a consequence, the harmful blooms have caused massive losses in aquaculture and coastal ecosystems, particularly mortalities in cultured shellfish. Therefore, whether A. anophagefferens was recently introduced to China via natural/artificial transport of resting stage cells or has been an indigenous species has become a question of profound ecological significance and broad interest, which motivated our extensive investigation on the geographic and historical presence of this species in the seas of China. We applied a combined approach of extensive PCR-based detection and sequencing, germination experiments and monoclonal antibody staining of germlings to samples of surface sediment and sediment core (dated via combined isotopic measurements) collected from all four seas of China, and searched the supplementary data set of a recent Science publication. We discovered that A. anophagefferens does have a resting stage in the sediment, but it also has a wide geographic distribution both in China (covering a range of ~30° in latitude, ~15.7° in longitude and 2.5-3,456 m in water depth; temperate to tropical and coastal to open oceans) and in almost all oceans of the world and a historical presence of >1,500 years in the Bohai Sea, China. The work revealed that A. anophagefferens is not a recently introduced, but an indigenous species in China and has in fact a globally cosmopolitan distribution.


Assuntos
Geografia , Filogenia , Estramenópilas/fisiologia , Movimentos da Água , Anticorpos Monoclonais/metabolismo , China , DNA Ribossômico/genética , Sedimentos Geológicos , Internacionalidade , Oceanos e Mares , Reprodutibilidade dos Testes , Estramenópilas/genética
11.
Mar Drugs ; 16(1)2018 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-29342840

RESUMO

Marine biotoxin-contaminated seafood has caused thousands of poisonings worldwide this century. Given these threats, there is an increasing need for improved technologies that can be easily integrated into coastal monitoring programs. This study evaluates approaches for monitoring toxins associated with recurrent toxin-producing Alexandrium and Dinophysis blooms on Long Island, NY, USA, which cause paralytic and diarrhetic shellfish poisoning (PSP and DSP), respectively. Within contrasting locations, the dynamics of pelagic Alexandrium and Dinophysis cell densities, toxins in plankton, and toxins in deployed blue mussels (Mytilus edulis) were compared with passive solid-phase adsorption toxin tracking (SPATT) samplers filled with two types of resin, HP20 and XAD-2. Multiple species of wild shellfish were also collected during Dinophysis blooms and used to compare toxin content using two different extraction techniques (single dispersive and double exhaustive) and two different toxin analysis assays (liquid chromatography/mass spectrometry and the protein phosphatase inhibition assay (PP2A)) for the measurement of DSP toxins. DSP toxins measured in the HP20 resin were significantly correlated (R² = 0.7-0.9, p < 0.001) with total DSP toxins in shellfish, but were detected more than three weeks prior to detection in deployed mussels. Both resins adsorbed measurable levels of PSP toxins, but neither quantitatively tracked Alexandrium cell densities, toxicity in plankton or toxins in shellfish. DSP extraction and toxin analysis methods did not differ significantly (p > 0.05), were highly correlated (R² = 0.98-0.99; p < 0.001) and provided complete recovery of DSP toxins from standard reference materials. Blue mussels (Mytilus edulis) and ribbed mussels (Geukensia demissa) were found to accumulate DSP toxins above federal and international standards (160 ng g-1) during Dinophysis blooms while Eastern oysters (Crassostrea virginica) and soft shell clams (Mya arenaria) did not. This study demonstrated that SPATT samplers using HP20 resin coupled with PP2A technology could be used to provide early warning of DSP, but not PSP, events for shellfish management.


Assuntos
Dinoflagellida/química , Toxinas Marinhas/química , Frutos do Mar/análise , Frutos do Mar/parasitologia , Animais , Cromatografia Líquida/métodos , Monitoramento Ambiental/métodos , Mytilus edulis/parasitologia , Alimentos Marinhos/análise , Alimentos Marinhos/parasitologia , Água do Mar/parasitologia , Espectrometria de Massas em Tandem/métodos
12.
Appl Environ Microbiol ; 83(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003198

RESUMO

The bloom-forming, toxic cyanobacterium Microcystis synthesizes multiple secondary metabolites and has been shown to deter zooplankton grazing. However, the biochemical and/or molecular basis by which Microcystis deters zooplankton remains unclear. This global transcriptomic study explored the response of Microcystis to direct and indirect exposures to multiple densities of two cladoceran grazers, Daphnia pulex and D. magna Higher densities of both daphnids significantly reduced Microcystis cell densities and elicited a stronger transcriptional response in Microcystis While many putative grazer deterrence genes (encoding microcystin, aeruginosin, cyanopeptolin, and microviridin) were largely unaffected by zooplankton, transcripts for heat shock proteins (hsp) increased in abundance. Beyond metabolites and hsp, large increases in the abundances of transcripts from photosynthetic processes were observed, evidencing energy acquisition pathways were stimulated by grazing. In addition, transcripts of genes associated with the production of extracellular polysaccharides and gas vesicles significantly increased in abundance. These genes have been associated with colony formation and may have been invoked to deter grazers. Collectively, this study demonstrates that daphnid grazers induce a significant transcriptomic response in Microcystis, suggesting this cyanobacterium upregulates specific biochemical pathways to adapt to predation.IMPORTANCE This work explores the transcriptomic responses of Microcystis aeruginosa following exposure to grazing by two cladocerans, Daphnia magna and D. pulex Contrary to previous hypotheses, Microcystis did not employ putative grazing deterrent secondary metabolites in response to the cladocerans, suggesting they may have other roles within the cell, such as oxidative stress protection. The transcriptional metabolic signature during intense grazing was largely reflective of a growth and stress response, although increasing abundances of transcripts encoding extracellular polysaccharides and gas vesicles were potentially related to predator avoidance.


Assuntos
Microcystis/fisiologia , Transcriptoma/fisiologia , Zooplâncton/fisiologia , Animais , Daphnia/efeitos dos fármacos , Daphnia/crescimento & desenvolvimento , Daphnia/fisiologia , Depsipeptídeos , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico , Microcistinas , Microcystis/genética , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Oligopeptídeos , Peptídeos Cíclicos , Fotossíntese , RNA Bacteriano , Metabolismo Secundário/genética , Zooplâncton/crescimento & desenvolvimento
13.
J Phycol ; 53(1): 118-130, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27779759

RESUMO

To date, the life stages of pelagophytes have been poorly described. This study describes the ability of Aureoumbra lagunensis to enter a resting stage in response to environmental stressors including high temperature, nutrient depletion, and darkness as well as their ability to revert from resting cells back to vegetative cells after exposure to optimal light, temperature, and nutrient conditions. Resting cells became round in shape and larger in size, filled with red accumulation bodies, had smaller and fewer plastids, more vacuolar space, contained lower concentrations of chl a and RNA, displayed reduced photosynthetic efficiency, and lower respiration rates relative to vegetative cells. Analysis of vegetative and resting cells using Raman microspectrometry indicated resting cells were enriched in sterols within red accumulation bodies and were depleted in pigments relative to vegetative cells. Upon reverting to vegetative cells, cells increased their chl a content, photosynthetic efficiency, respiration rate, and growth rate and lost accumulation bodies as they became smaller. The time required for resting cells to resume vegetative growth was proportional to both the duration and temperature of dark storage, possibly due to higher metabolic demands on stored energy (sterols) reserves during longer period of storage and/or storage at higher temperature (20°C vs. 10°C). Resting cells kept in the dark at 10°C for 7 months readily reverted back to vegetative cells when transferred to optimal conditions. Thus, the ability of Aureoumbra to form a resting stage likely enables them to form annual blooms within subtropic ecosystems, resist temperature extremes, and may facilitate geographic expansion via anthropogenic transport.


Assuntos
Proliferação Nociva de Algas , Estramenópilas/fisiologia , Microscopia Eletrônica de Transmissão , Estramenópilas/química , Estramenópilas/crescimento & desenvolvimento , Estramenópilas/ultraestrutura
14.
Appl Environ Microbiol ; 82(4): 1114-1125, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26637596

RESUMO

Cochlodinium polykrikoides is a cosmopolitan dinoflagellate that is notorious for causing fish-killing harmful algal blooms (HABs) across North America and Asia. While recent laboratory and ecosystem studies have definitively demonstrated that Cochlodinium forms resting cysts that may play a key role in the dynamics of its HABs, uncertainties regarding cyst morphology and detection have prohibited even a rudimentary understanding of the distribution of C. polykrikoides cysts in coastal ecosystems. Here, we report on the development of a fluorescence in situ hybridization (FISH) assay using oligonucleotide probes specific for the large subunit (LSU) ribosomal DNA (rDNA) of C. polykrikoides. The LSU rDNA-targeted FISH assay was used with epifluorescence microscopy and was iteratively refined to maximize the fluorescent reaction with C. polykrikoides and minimize cross-reactivity. The final LSU rDNA-targeted FISH assay was found to quantitatively recover cysts made by North American isolates of C. polykrikoides but not cysts formed by other common cyst-forming dinoflagellates. The method was then applied to identify and map C. polykrikoides cysts across bloom-prone estuaries. Annual cyst and vegetative cell surveys revealed that elevated densities of C. polykrikoides cysts (>100 cm(-3)) during the spring of a given year were spatially consistent with regions of dense blooms the prior summer. The identity of cysts in sediments was confirmed via independent amplification of C. polykrikoides rDNA. This study mapped C. polykrikoides cysts in a natural marine setting and indicates that the excystment of cysts formed by this harmful alga may play a key role in the development of HABs of this species.


Assuntos
Dinoflagellida/isolamento & purificação , Estuários , Sedimentos Geológicos/parasitologia , Hibridização in Situ Fluorescente/métodos , Esporos de Protozoários/isolamento & purificação , DNA de Protozoário/genética , DNA Ribossômico/genética , Dinoflagellida/genética , Microscopia de Fluorescência , América do Norte , Sondas de Oligonucleotídeos/genética , RNA Ribossômico/genética , Estações do Ano , Sensibilidade e Especificidade , Esporos de Protozoários/genética
15.
Biol Lett ; 12(5)2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27146441

RESUMO

There is increasing recognition that low dissolved oxygen (DO) and low pH conditions co-occur in many coastal and open ocean environments. Within temperate ecosystems, these conditions not only develop seasonally as temperatures rise and metabolic rates accelerate, but can also display strong diurnal variability, especially in shallow systems where photosynthetic rates ameliorate hypoxia and acidification by day. Despite the widespread, global co-occurrence of low pH and low DO and the likelihood that these conditions may negatively impact marine life, very few studies have actually assessed the extent to which the combination of both stressors elicits additive, synergistic or antagonistic effects in marine organisms. We review the evidence from published factorial experiments that used static and/or fluctuating pH and DO levels to examine different traits (e.g. survival, growth, metabolism), life stages and species across a broad taxonomic spectrum. Additive negative effects of combined low pH and low DO appear to be most common; however, synergistic negative effects have also been observed. Neither the occurrence nor the strength of these synergistic impacts is currently predictable, and therefore, the true threat of concurrent acidification and hypoxia to marine food webs and fisheries is still not fully understood. Addressing this knowledge gap will require an expansion of multi-stressor approaches in experimental and field studies, and the development of a predictive framework. In consideration of marine policy, we note that DO criteria in coastal waters have been developed without consideration of concurrent pH levels. Given the persistence of concurrent low pH-low DO conditions in estuaries and the increased mortality experienced by fish and bivalves under concurrent acidification and hypoxia compared with hypoxia alone, we conclude that such DO criteria may leave coastal fisheries more vulnerable to population reductions than previously anticipated.


Assuntos
Organismos Aquáticos/fisiologia , Dióxido de Carbono/química , Ecossistema , Água do Mar/química , Animais , Concentração de Íons de Hidrogênio , Oceanos e Mares , Temperatura
16.
Environ Sci Technol ; 50(2): 604-15, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26654276

RESUMO

Although toxic cyanobacterial blooms in western Lake Erie threaten drinking water supplies and are promoted by nutrient loading, the precise nutrient regime that selects specific cyanobacteria populations is poorly understood. Here, we assess shifts in cyanobacterial abundances and global gene-expression patterns in response to natural and manipulated gradients in nitrogen and phosphorus to identify gene pathways that facilitate dominance by different cyanobacteria. Gradients in soluble reactive phosphorus shaped cyanobacterial communities and elicited the largest transcriptomic responses. Under high-P conditions (closest to the mouth of the Maumee River), Anabaena and Planktothrix were the dominant cyanobacterial populations, and experimental P and ammonium enrichment promoted nitrogen fixation gene (nifH) expression in Anabaena. For Microcystis, experimental additions of P up-regulated genes involved in phage defense, genomic rearrangement, and nitrogen acquisition but led to lower abundances. Within offshore, low-P regions of the western basin of Lake Erie, Microcystis up-regulated genes associated with P scavenging (pstSCAB, phoX) and dominated cyanobacterial communities. Experimental additions of ammonium and urea did not alter Microcystis abundances but did up-regulate protease inhibitors (aer and mcn gene sets) and microcystin synthetase genes (mcy), with urea enrichment yielding significant increases in microcystin concentrations. Our findings suggest that management plans that reduce P loads alone may not significantly reduce the risk of cyanobacterial blooms in western Lake Erie but rather may promote a shift among cyanobacterial populations (Microcystis, Anabaena, and Planktothrix) toward a greater dominance by toxic strains of Microcystis.


Assuntos
Proteínas de Bactérias/genética , Cianobactérias/fisiologia , Ecossistema , Nitrogênio/metabolismo , Fósforo/metabolismo , Proteínas de Bactérias/metabolismo , Cianobactérias/genética , Lagos/microbiologia , Ohio , Análise de Sequência de DNA , Transcriptoma
17.
Chem Biodivers ; 13(2): 249-52, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26880439

RESUMO

Sterol and fatty acid compositions were determined for Cochlodinium polykrikoides, a toxic, bloom-forming dinoflagellate of global significance. The major sterols were dinosterol (40% of total sterols), dihydrodinosterol (32%), and the rare 4α-methyl Δ(8(14)) sterol, amphisterol (23%). A minor sterol, 4α-methylergost-24(28)-enol was also detected (5.0%). The fatty acids had a high proportion of PUFAs (47%), consisting mainly of EPA (20%) and the relatively uncommon octadecapentaenoic acid (18 : 5, 22%). While unlikely to be responsible for toxicity to fish, these lipids may contribute to the deleterious effects of this alga to invertebrates.


Assuntos
Dinoflagellida/química , Ácidos Graxos/análise , Esteróis/análise , Ácidos Graxos Insaturados/análise , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética
18.
BMC Genomics ; 16: 1068, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26673568

RESUMO

BACKGROUND: While transcriptomics have become a valuable tool for linking physiology and ecology in aquatic microbes, the temporal dynamics of global transcriptomic patterns in Microcystis have rarely been assessed. Furthermore, while many microbial studies have explored expression of nutrient transporter genes, few studies have concurrently measured nutrient assimilation rates. Here, we considered how the global transcriptomic patterns and physiology of the cyanobacterium, Microcystis aeruginosa, changed daily as cells were grown from replete to deficient nitrogen (N) conditions and then back to replete conditions. RESULTS: During N deprivation, Microcystis downregulated genes involved in photosynthesis and respiration, carbon acquisition, lipid metabolism, and amino acid biosynthesis while upregulating genes involved in N acquisition and transport. With increasing N stress, both the strength of expression and number of genes being differentially expressed increased, until N was restored at which point these patterns reversed. Uptake of (15)N-labeled nitrate, ammonium and urea reflected differential expression of genes encoding transporters for these nutrients, with Microcystis appearing to preferentially increase transcription of ammonium and urea transporters and uptake of these compounds during N deprivation. Nitrate uptake and nitrate transporter expression were correlated for one set of transporters but not another, indicating these were high and low affinity nitrate transporters, respectively. Concentrations of microcystin per cell decreased during N deprivation and increased upon N restoration. However, the transcript abundance of genes involved in the synthesis of this compound was complex, as microcystin synthetase genes involved in peptide synthesis were downregulated under N deprivation while genes involved in tailoring and transport were upregulated, suggesting modification of the microcystin molecule under N stress as well as potential alternative functions for these genes and/or this toxin. CONCLUSIONS: Collectively, this study highlights the complex choreography of gene expression, cell physiology, and toxin synthesis that dynamic N levels can elicit in this ecologically important cyanobacterium. Differing expression patterns of genes within the microcystin synthetase operon in response to changing N levels revealed the potential limitations drawing conclusions based on only one gene in this operon.


Assuntos
Regulação Bacteriana da Expressão Gênica , Microcistinas/biossíntese , Microcystis/genética , Microcystis/metabolismo , Nitrogênio/metabolismo , Transcriptoma , Transporte Biológico , Carbono/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Metabolismo dos Lipídeos
19.
Limnol Oceanogr ; 60(1): 198-214, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27721521

RESUMO

The effects of coastal acidification on the growth and toxicity of the saxitoxin-producing dinoflagellate Alexandrium fundyense were examined in culture and ecosystem studies. In culture experiments, Alexandrium strains isolated from Northport Bay NY, USA, and the Bay of Fundy, Canada, grew significantly faster (16 -190%; p<0.05) when exposed to elevated levels of pCO2 (~ 800- 1900µatm) compared to lower levels (~390µatm). Exposure to higher levels of pCO2 also resulted in significant increases (71 - 81%) in total cellular toxicity (fg STX eq. cell-1) in the Northport Bay strain, while no changes in toxicity were detected in the Bay of Fundy strain. The positive relationship between pCO2 enhancement and elevated growth was reproducible using natural populations from Northport; Alexandrium densities were significantly and consistently enhanced when natural populations were incubated at 1500 µatm pCO2, a value at the upper range of those recorded in Northport Bay, 390 - 1500 µatm. During natural Alexandrium blooms in Northport Bay, pCO2 concentrations increased over the course of a bloom to more than 1700µatm and were highest in regions with the greatest Alexandrium abundances, suggesting Alexandrium may be further exacerbating acidification or be especially adapted to these extreme, acidified conditions. The co-occurrence of Alexandrium blooms and elevated pCO2 represents a previously unrecognized, compounding environmental threat to coastal ecosystems. The ability of elevated pCO2 to enhance the growth and toxicity of Alexandrium indicates that acidification promoted by eutrophication or climate change can intensify these, and perhaps other, harmful algal blooms.

20.
Microb Ecol ; 70(2): 361-71, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25661475

RESUMO

Cyanobacteria are fundamental components of aquatic phytoplankton communities and some taxa can cause harmful blooms in coastal ecosystems. Harmful cyanobacterial blooms are typically comprised of multiple strains of a single genus or species that cannot be resolved microscopically. Florida Bay, USA, has experienced harmful cyanobacterial blooms that have been associated with the loss of eelgrass, spiny lobsters, and general food web disruption for more than two decades. To identify the strain or strains of cyanobacteria forming blooms in Florida Bay, samples were collected across the system over an annual cycle and analyzed via DNA sequencing using cyanobacterial-specific 16S rRNA gene primers, flow cytometry, and scanning electron microscopy. Analyses demonstrated that the onset of blooms in Florida Bay was coincident with a transformation of the cyanobacterial populations. When blooms were absent, the cyanobacterial population in Florida Bay was dominated by phycoerythrin-containing Synechococcus cells that were most similar to strains within Clade III. As blooms developed, the cyanobacterial community transitioned to dominance by phycocyanin-containing Synechococcus cells that were coated with mucilage, chain-forming, and genetically most similar to the coastal strains within Clade VIII. Clade VIII strains of Synechococcus are known to grow rapidly, utilize organic nutrients, and resist top-down control by protozoan grazers and viruses, all characteristics consistent with observations of cyanobacterial blooms in Florida Bay. Further, the strains of Synechococcus blooming in this system are genetically distinct from the species previously thought to cause blooms in Florida Bay, Synechococcus elongatus. Collectively, this study identified the causative organism of harmful cyanobacterial blooms in Florida Bay, demonstrates the dynamic nature of cyanobacterial stains within genera in an estuary, and affirms factors promoting Synechococcus blooms.


Assuntos
Cianobactérias/classificação , Cianobactérias/crescimento & desenvolvimento , Proliferação Nociva de Algas , Baías , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Florida , RNA Ribossômico 16S/genética , Synechococcus/classificação , Synechococcus/genética , Synechococcus/crescimento & desenvolvimento , Synechococcus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA