RESUMO
Group 3 innate lymphoid cells (ILC3s) regulate immunity and inflammation, yet their role in cancer remains elusive. Here, we identify that colorectal cancer (CRC) manifests with altered ILC3s that are characterized by reduced frequencies, increased plasticity, and an imbalance with T cells. We evaluated the consequences of these changes in mice and determined that a dialog between ILC3s and T cells via major histocompatibility complex class II (MHCII) is necessary to support colonization with microbiota that subsequently induce type-1 immunity in the intestine and tumor microenvironment. As a result, mice lacking ILC3-specific MHCII develop invasive CRC and resistance to anti-PD-1 immunotherapy. Finally, humans with dysregulated intestinal ILC3s harbor microbiota that fail to induce type-1 immunity and immunotherapy responsiveness when transferred to mice. Collectively, these data define a protective role for ILC3s in cancer and indicate that their inherent disruption in CRC drives dysfunctional adaptive immunity, tumor progression, and immunotherapy resistance.
Assuntos
Neoplasias do Colo/imunologia , Neoplasias do Colo/terapia , Progressão da Doença , Imunidade Inata , Imunoterapia , Linfócitos/imunologia , Animais , Comunicação Celular/efeitos dos fármacos , Plasticidade Celular/efeitos dos fármacos , Neoplasias do Colo/microbiologia , Fezes/microbiologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade Inata/efeitos dos fármacos , Inflamação/imunologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Intestinos/patologia , Linfócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Invasividade Neoplásica , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Doadores de TecidosRESUMO
Interleukin (IL-)23 is a major mediator and therapeutic target in chronic inflammatory diseases that also elicits tissue protection in the intestine at homeostasis or following acute infection1-4. However, the mechanisms that shape these beneficial versus pathological outcomes remain poorly understood. To address this gap in knowledge, we performed single-cell RNA sequencing on all IL-23 receptor-expressing cells in the intestine and their acute response to IL-23, revealing a dominance of T cells and group 3 innate lymphoid cells (ILC3s). Unexpectedly, we identified potent upregulation of the immunoregulatory checkpoint molecule cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) on ILC3s. This pathway was activated by gut microbes and IL-23 in a FOXO1- and STAT3-dependent manner. Mice lacking CTLA-4 on ILC3s exhibited reduced regulatory T cells, elevated inflammatory T cells and more-severe intestinal inflammation. IL-23 induction of CTLA-4+ ILC3s was necessary and sufficient to reduce co-stimulatory molecules and increase PD-L1 bioavailability on intestinal myeloid cells. Finally, human ILC3s upregulated CTLA-4 in response to IL-23 or gut inflammation and correlated with immunoregulation in inflammatory bowel disease. These results reveal ILC3-intrinsic CTLA-4 as an essential checkpoint that restrains the pathological outcomes of IL-23, suggesting that disruption of these lymphocytes, which occurs in inflammatory bowel disease5-7, contributes to chronic inflammation.
Assuntos
Imunidade Inata , Inflamação , Interleucina-23 , Linfócitos , Animais , Feminino , Humanos , Masculino , Camundongos , Antígeno CTLA-4/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Microbioma Gastrointestinal , Inflamação/imunologia , Inflamação/patologia , Inflamação/metabolismo , Interleucina-23/imunologia , Intestinos/imunologia , Intestinos/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Análise da Expressão Gênica de Célula Única , Fator de Transcrição STAT3/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismoRESUMO
Microbial colonization of the mammalian intestine elicits inflammatory or tolerogenic T cell responses, but the mechanisms controlling these distinct outcomes remain poorly understood, and accumulating evidence indicates that aberrant immunity to intestinal microbiota is causally associated with infectious, inflammatory and malignant diseases1-8. Here we define a critical pathway controlling the fate of inflammatory versus tolerogenic T cells that respond to the microbiota and express the transcription factor RORγt. We profiled all RORγt+ immune cells at single-cell resolution from the intestine-draining lymph nodes of mice and reveal a dominant presence of T regulatory (Treg) cells and lymphoid tissue inducer-like group 3 innate lymphoid cells (ILC3s), which co-localize at interfollicular regions. These ILC3s are distinct from extrathymic AIRE-expressing cells, abundantly express major histocompatibility complex class II, and are necessary and sufficient to promote microbiota-specific RORγt+ Treg cells and prevent their expansion as inflammatory T helper 17 cells. This occurs through ILC3-mediated antigen presentation, αV integrin and competition for interleukin-2. Finally, single-cell analyses suggest that interactions between ILC3s and RORγt+ Treg cells are impaired in inflammatory bowel disease. Our results define a paradigm whereby ILC3s select for antigen-specific RORγt+ Treg cells, and against T helper 17 cells, to establish immune tolerance to the microbiota and intestinal health.
Assuntos
Tolerância Imunológica , Intestinos , Linfócitos , Microbiota , Linfócitos T Reguladores , Animais , Imunidade Inata , Integrina alfaV/metabolismo , Interleucina-2/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Linfonodos/citologia , Linfonodos/imunologia , Linfócitos/imunologia , Microbiota/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Análise de Célula Única , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Fatores de Transcrição/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologiaRESUMO
Physical separation between the mammalian immune system and commensal bacteria is necessary to limit chronic inflammation. However, selective species of commensal bacteria can reside within intestinal lymphoid tissues of healthy mammals. Here, we demonstrate that lymphoid-tissue-resident commensal bacteria (LRC) colonized murine dendritic cells and modulated their cytokine production. In germ-free and antibiotic-treated mice, LRCs colonized intestinal lymphoid tissues and induced multiple members of the IL-10 cytokine family, including dendritic-cell-derived IL-10 and group 3 innate lymphoid cell (ILC3)-derived IL-22. Notably, IL-10 limited the development of pro-inflammatory Th17 cell responses, and IL-22 production enhanced LRC colonization in the steady state. Furthermore, LRC colonization protected mice from lethal intestinal damage in an IL-10-IL-10R-dependent manner. Collectively, our data reveal a unique host-commensal-bacteria dialog whereby selective subsets of commensal bacteria interact with dendritic cells to facilitate tissue-specific responses that are mutually beneficial for both the host and the microbe.
Assuntos
Infecções por Bordetella/imunologia , Bordetella/imunologia , Células Dendríticas/imunologia , Interleucina-10/metabolismo , Intestinos/imunologia , Tecido Linfoide/imunologia , Células Th17/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/microbiologia , Interleucina-10/genética , Interleucinas/genética , Interleucinas/metabolismo , Intestinos/microbiologia , Tecido Linfoide/microbiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , Receptores de Interleucina-10/genética , Receptores de Interleucina-10/metabolismo , Simbiose/genética , Células Th17/microbiologia , Interleucina 22RESUMO
Interleukin (IL)-2 is a pleiotropic cytokine that is necessary to prevent chronic inflammation in the gastrointestinal tract1-4. The protective effects of IL-2 involve the generation, maintenance and function of regulatory T (Treg) cells4-8, and the use of low doses of IL-2 has emerged as a potential therapeutic strategy for patients with inflammatory bowel disease9. However, the cellular and molecular pathways that control the production of IL-2 in the context of intestinal health are undefined. Here we show, in a mouse model, that IL-2 is acutely required to maintain Treg cells and immunological homeostasis throughout the gastrointestinal tract. Notably, lineage-specific deletion of IL-2 in T cells did not reduce Treg cells in the small intestine. Unbiased analyses revealed that, in the small intestine, group-3 innate lymphoid cells (ILC3s) are the dominant cellular source of IL-2, which is induced selectively by IL-1ß. Macrophages in the small intestine produce IL-1ß, and activation of this pathway involves MYD88- and NOD2-dependent sensing of the microbiota. Our loss-of-function studies show that ILC3-derived IL-2 is essential for maintaining Treg cells, immunological homeostasis and oral tolerance to dietary antigens in the small intestine. Furthermore, production of IL-2 by ILC3s was significantly reduced in the small intestine of patients with Crohn's disease, and this correlated with lower frequencies of Treg cells. Our results reveal a previously unappreciated pathway in which a microbiota- and IL-1ß-dependent axis promotes the production of IL-2 by ILC3s to orchestrate immune regulation in the intestine.
Assuntos
Imunidade Inata/imunologia , Interleucina-2/imunologia , Intestinos/citologia , Intestinos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos/administração & dosagem , Antígenos/imunologia , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Feminino , Microbioma Gastrointestinal/imunologia , Homeostase/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-2/deficiência , Interleucina-2/metabolismo , Intestino Delgado/citologia , Intestino Delgado/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína Adaptadora de Sinalização NOD2/deficiência , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Linfócitos T Reguladores/classificação , Linfócitos T Reguladores/metabolismoRESUMO
RATIONALE: Patients with chronic obstructive pulmonary disease (COPD) have a higher prevalence of lung cancer. The chronic inflammation associated with COPD probably promotes the earliest stages of carcinogenesis. However, once tumors have progressed to malignancy, the impact of COPD on the tumor immune microenvironment remains poorly defined, and its effects on immune-checkpoint blockers' efficacy are still unknown. OBJECTIVES: To study the impact of COPD on the immune contexture of non-small cell lung cancer. METHODS: We performed in-depth immune profiling of lung tumors by immunohistochemistry and we determined its impact on patient survival (n = 435). Tumor-infiltrating T lymphocyte (TIL) exhaustion by flow cytometry (n = 50) was also investigated. The effectiveness of an anti-PD-1 (programmed cell death-1) treatment (nivolumab) was evaluated in 39 patients with advanced-stage non-small cell lung cancer. All data were analyzed according to patient COPD status. MEASUREMENTS AND MAIN RESULTS: Remarkably, COPD severity is positively correlated with the coexpression of PD-1/TIM-3 (T-cell immunoglobulin and mucin domain-containing molecule-3) by CD8 T cells. In agreement, we observed a loss of CD8 T cell-associated favorable clinical outcome in COPD+ patients. Interestingly, a negative prognostic value of PD-L1 (programmed cell death ligand 1) expression by tumor cells was observed only in highly CD8 T cell-infiltrated tumors of COPD+ patients. Finally, data obtained on 39 patients with advanced-stage non-small cell lung cancer treated by an anti-PD-1 antibody showed longer progression-free survival in COPD+ patients, and also that the association between the severity of smoking and the response to nivolumab was preferentially observed in COPD+ patients. CONCLUSIONS: COPD is associated with an increased sensitivity of CD8 tumor-infiltrating T lymphocytes to immune escape mechanisms developed by tumors, thus suggesting a higher sensitivity to PD-1 blockade in patients with COPD.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Microambiente Tumoral/imunologia , Idoso , Análise de Variância , Biópsia por Agulha , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Doença Pulmonar Obstrutiva Crônica/mortalidade , Doença Pulmonar Obstrutiva Crônica/patologia , Estudos Retrospectivos , Medição de Risco , Análise de SobrevidaRESUMO
A delicate balance exists between the mammalian immune system and normally beneficial commensal bacteria that colonize the gastrointestinal tract, which is necessary to maintain tissue homeostasis. Dysregulation of these interactions between the host and commensal bacteria is causally associated with chronic inflammation and the development of cancer. In contrast, recent reports have highlighted that commensal bacteria also play an essential role in promoting anti-tumor immune responses in several contexts, highlighting a paradox whereby interactions between the host and commensal bacteria can influence both pro- and anti-tumor immunity. Given the critical roles for group 3 innate lymphoid cells (ILC3s) in regulating inflammation, tissue repair and host-microbe interactions in the intestine, here we discuss new evidence that ILC3s may profoundly influence the development, progression and control of tumors. In this review, we provide an overview of recent advances in understanding the impact of commensal bacteria on tumorigenesis, discuss recent findings identifying ILC3s as critical regulators of host-microbe interactions and highlight the emerging role of this immune cell population in cancer and their potential implication as a therapeutic target.
Assuntos
Imunoterapia , Inflamação/imunologia , Mucosa Intestinal/imunologia , Linfócitos/imunologia , Neoplasias/imunologia , Animais , Carcinogênese , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Mucosa Intestinal/microbiologia , Linfócitos/microbiologia , SimbioseRESUMO
Tertiary lymphoid structures (TLS) are ectopic lymphoid formations found in inflamed, infected, or tumoral tissues. They exhibit all the characteristics of structures in the lymph nodes (LN) associated with the generation of an adaptive immune response, including a T cell zone with mature dendritic cells (DC), a germinal center with follicular dendritic cells (FDC) and proliferating B cells, and high endothelial venules (HEV). In this review, we discuss evidence for the roles of TLS in chronic infection, autoimmunity, and cancer, and address the question of whether TLS present beneficial or deleterious effects in these contexts. We examine the relationship between TLS in tumors and patient prognosis, and discuss the potential role of TLS in building and/or maintaining local immune responses and how this understanding may guide therapeutic interventions.
Assuntos
Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Biomarcadores , Humanos , Imunidade Celular , Infecções/imunologia , Infecções/patologia , Inflamação/imunologia , Inflamação/patologia , Neoplasias/genética , Neoplasias/patologia , Prognóstico , Microambiente Tumoral/genéticaRESUMO
RATIONALE: Tumor-infiltrating immune cells affect lung cancer outcome. However, the factors that influence the composition and function of the tumor immune environment remain poorly defined and need investigation, particularly in the era of immunotherapy. OBJECTIVES: To determine whether the tumoral immune environment is related to lung adenocarcinoma mutations. METHODS: This retrospective cohort included 316 consecutive patients with lung adenocarcinoma (225 men; 258 smokers) studied from 2001 to 2005 in a single center. We investigated the association of densities of intratumoral mature dendritic cells (mDCs), CD8+ T cells, neutrophils, and macrophages with clinical and pathological variables and tumor cell mutation profiles obtained by next-generation sequencing. MEASUREMENTS AND MAIN RESULTS: In 282 tumors, we found 460 mutations, mainly in TP53 (59%), KRAS (40%), STK11 (24%), and EGFR (14%). Intratumoral CD8+ T-cell density was high in smokers (P = 0.02) and TP53-mutated tumors (P = 0.02) and low in BRAF-mutated tumors (P = 0.005). Intratumoral mDC density was high with low pathological tumor stage (P = 0.01) and low with STK11 mutation (P = 0.004). Intratumoral neutrophil density was high and low with BRAF mutation (P = 0.04) and EGFR mutation (P = 0.02), respectively. Intratumoral macrophage density was low with EGFR mutation (P = 0.01). Intratumoral CD8+ T-cell and mDC densities remained strong independent markers of overall survival (P = 0.001 and P = 0.02, respectively). CONCLUSIONS: Intratumoral immune cell densities (mDCs, CD8+ T cells, neutrophils, macrophages) were significantly associated with molecular alterations in adenocarcinoma underlying the interactions between cancer cells and their microenvironment.
Assuntos
Adenocarcinoma/genética , Adenocarcinoma/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Adenocarcinoma de Pulmão , Adulto , Idoso , Idoso de 80 Anos ou mais , Contagem de Células , Estudos de Coortes , Feminino , Humanos , Pulmão/imunologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto JovemRESUMO
RATIONALE: It is now well established that immune responses can take place outside of primary and secondary lymphoid organs. We previously described the presence of tertiary lymphoid structures (TLS) in patients with non-small cell lung cancer (NSCLC) characterized by clusters of mature dendritic cells (DCs) and T cells surrounded by B-cell follicles. We demonstrated that the density of these mature DCs was associated with favorable clinical outcome. OBJECTIVES: To study the role of follicular B cells in TLS and the potential link with a local humoral immune response in patients with NSCLC. METHODS: The cellular composition of TLS was investigated by immunohistochemistry. Characterization of B-cell subsets was performed by flow cytometry. A retrospective study was conducted in two independent cohorts of patients. Antibody specificity was analyzed by ELISA. MEASUREMENTS AND MAIN RESULTS: Consistent with TLS organization, all stages of B-cell differentiation were detectable in most tumors. Germinal center somatic hypermutation and class switch recombination machineries were activated, associated with the generation of plasma cells. Approximately half of the patients showed antibody reactivity against up to 7 out of the 33 tumor antigens tested. A high density of follicular B cells correlated with long-term survival, both in patients with early-stage NSCLC and with advanced-stage NSCLC treated with chemotherapy. The combination of follicular B cell and mature DC densities allowed the identification of patients with the best clinical outcome. CONCLUSIONS: B-cell density represents a new prognostic biomarker for NSCLC patient survival, and makes the link between TLS and a protective B cell-mediated immunity.
Assuntos
Subpopulações de Linfócitos B/metabolismo , Carcinoma Pulmonar de Células não Pequenas/imunologia , Imunidade Humoral , Neoplasias Pulmonares/imunologia , Biomarcadores/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Estudos de Coortes , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/mortalidade , Masculino , Prognóstico , Estudos RetrospectivosRESUMO
A high density of intratumoral effector memory CD8+/Th1 T cells is associated with favorable prognosis in most cancers and may be induced or increased by immunotherapy. Efficient adaptive immune reactions are shaped in tumor adjacent tertiary lymphoid structures, which exhibit all characteristics of immunity generating lymphoid formations in reactive lymph nodes. Malignant tumor cells impact favorably or deleteriously their immune microenvironment if they bear genetic mutations that result in neo-antigens or by producing chemokines and cytokines that recruit lymphocytes and myeloid cells or increase inflammation and neo-angiogenesis. This intricate network of interactions results in control or escape of tumors, and its understanding will help define goals to monitor efficiency of immunotherapies.
Assuntos
Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Humanos , Imunoterapia/métodos , Neoplasias/terapia , PrognósticoRESUMO
Group 3 innate lymphoid cells (ILC3s) are abundant in the developing or healthy intestine to critically support tissue homeostasis in response to microbial colonization. However, intestinal ILC3s are reduced during chronic infections, colorectal cancer, or inflammatory bowel disease (IBD), and the mechanisms driving these alterations remain poorly understood. Here we employed RNA sequencing of ILC3s from IBD patients and observed a significant upregulation of RIPK3, the central regulator of necroptosis, during intestinal inflammation. This was modeled in mice where we found that intestinal ILC3s express RIPK3, with conventional (c)ILC3s exhibiting high RIPK3 and low levels of pro-survival genes relative to lymphoid tissue inducer (LTi)-like ILC3s. ILC3-specific RIPK3 is promoted by gut microbiota, further upregulated following enteric infection, and dependent upon IL-23R and STAT3 signaling. However, lineage-specific deletion of RIPK3 revealed a redundant role in ILC3 survival, due to a blockade of RIPK3-mediated necroptosis by caspase 8, which was also activated in response to enteric infection. In contrast, lineage-specific deletion of caspase 8 resulted in loss of cILC3s from the healthy intestine and all ILC3 subsets during enteric infection, which increased pathogen burdens and gut inflammation. This function of caspase 8 required catalytic activity induced by TNF or TL1A and was dispensable if RIPK3 was simultaneously deleted. Caspase 8 activation and cell death were associated with increased Fas on ILC3s, and the Fas-FasL pathway was upregulated by cILC3s during enteric infection, which could restrain the abundance of intestinal ILC3s. Collectively, these data reveal that interpretation of key cytokine signals controls ILC3 survival following microbial challenge, and that an imbalance of these pathways, such as in IBD or across ILC3 subsets, provokes depletion of tissue-protective ILC3s from the inflamed intestine.
RESUMO
The Arthur and Sandra Irving Cancer Immunology Symposium has been created as a platform for established cancer immunologists to mentor trainees and young investigators as they launch their research career in the field. By sharing their different paths to success, the senior faculty mentors provide an invaluable resource to support the development of the next generation of leaders in the cancer immunology community. This Commentary describes some of the key topics that were discussed during the 2022 symposium: scientific and career trajectory, leadership, mentoring, collaborations, and publishing. For each of these topics, established investigators discussed the elements that facilitate success in these areas as well as mistakes that can hinder progress. Herein, we outline the critical points raised in these discussions for establishing a successful independent research career. These points are highly relevant for the broader scientific community.
Assuntos
Tutoria , Neoplasias , Médicos , Humanos , Mentores , Pesquisadores , Neoplasias/terapiaRESUMO
Immune checkpoint blockade has revolutionized opportunities for therapeutic intervention in cancer but demonstrates a low frequency of response in most patients and in some common types of tumors. An emerging paradigm supports the notion that trillions of normally beneficial microbes inhabiting the gastrointestinal tract, termed the microbiota, critically impact the success or failure of antitumor immunity induced by immune checkpoint blockade. Here, we briefly summarize the current knowledge on how interactions between the microbiota and immune system are contributing to the outcome of cancer immunotherapy. We propose that this immune-microbiota dialogue is particularly important in gastrointestinal cancers that exhibit striking resistance to immune checkpoint blockade and inherently develop in a unique environment that is rich in both immune-cell networks and direct exposure to the microbiota. Finally, we focus on how future studies should determine whether microbiota can be harnessed as a strategy to boost antitumor immunity in these contexts and beyond. See related article, p. 1291.
Assuntos
Neoplasias Gastrointestinais , Microbiota , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Sistema ImunitárioRESUMO
On one hand, regulatory T cells (Tregs) play an immunosuppressive activity in most solid tumors but not all. On the other hand, the organization of tumor-infiltrating immune cells into tertiary lymphoid structures (TLS) is associated with long-term survival in most cancers. Here, we investigated the role of Tregs in the context of Non-Small Cell Lung Cancer (NSCLC)-associated TLS. We observed that Tregs show a similar immune profile in TLS and non-TLS areas. Autologous tumor-infiltrating Tregs inhibit the proliferation and cytokine secretion of CD4+ conventional T cells, a capacity which is recovered by antibodies against Cytotoxic T-Lymphocyte-Associated protein-4 (CTLA-4) and Glucocorticoid-Induced TNFR-Related protein (GITR) but not against other immune checkpoint (ICP) molecules. Tregs in the whole tumor, including in TLS, are associated with a poor outcome of NSCLC patients, and combination with TLS-dendritic cells (DCs) and CD8+ T cells allows higher overall survival discrimination. Thus, Targeting Tregs especially in TLS may represent a major challenge in order to boost anti-tumor immune responses initiated in TLS.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Estruturas Linfoides Terciárias , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linfócitos T Reguladores , Linfócitos T CD8-Positivos , Neoplasias Pulmonares/patologia , Estruturas Linfoides Terciárias/metabolismo , Estruturas Linfoides Terciárias/patologia , Linfócitos do Interstício TumoralRESUMO
The presence of tertiary lymphoid structures (TLS) in the tumor microenvironment is associated with better clinical outcome in many cancers. In non-small cell lung cancer (NSCLC), we have previously showed that a high density of B cells within TLS (TLS-B cells) is positively correlated with tumor antigen-specific antibody responses and increased intratumor CD4+ T cell clonality. Here, we investigated the relationship between the presence of TLS-B cells and CD4+ T cell profile in NSCLC patients. The expression of immune-related genes and proteins on B cells and CD4+ T cells was analyzed according to their relationship to TLS-B density in a prospective cohort of 56 NSCLC patients. We observed that tumor-infiltrating T cells showed marked differences according to TLS-B cell presence, with higher percentages of naïve, central-memory, and activated CD4+ T cells and lower percentages of both immune checkpoint (ICP)-expressing CD4+ T cells and regulatory T cells (Tregs) in the TLS-Bhigh tumors. A retrospective study of 538 untreated NSCLC patients showed that high TLS-B cell density was even able to counterbalance the deleterious impact of high Treg density on patient survival, and that TLS-Bhigh Treglow patients had the best clinical outcomes. Overall, the correlation between the density of TLS-Bhigh tumors with early differentiated, activated and non-regulatory CD4+ T cell cells suggest that B cells may play a central role in determining protective T cell responses in NSCLC patients.
Assuntos
Linfócitos B/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Transcriptoma , Microambiente Tumoral/imunologiaRESUMO
BACKGROUND: Natural killer (NK) cells play a crucial role in tumor immunosurveillance through their cytotoxic effector functions and their capacity to interact with other immune cells to build a coordinated antitumor immune response. Emerging data reveal NK cell dysfunction within the tumor microenvironment (TME) through checkpoint inhibitory molecules associated with a regulatory phenotype. OBJECTIVE: We aimed at analyzing the gene expression profile of intratumoral NK cells compared with non-tumorous NK cells, and to characterize their inhibitory function in the TME. METHODS: NK cells were sorted from human lung tumor tissue and compared with non- tumoral distant lungs. RESULTS: In the current study, we identify a unique gene signature of NK cell dysfunction in human non-small cell lung carcinoma (NSCLC). First, transcriptomic analysis reveals significant changes related to migratory pattern with a downregulation of sphingosine-1-phosphate receptor 1 (S1PR1) and CX3C chemokine receptor 1 (CX3CR1) and overexpression of C-X-C chemokine receptor type 5 (CXCR5) and C-X-C chemokine receptor type 6 (CXCR6). Second, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and killer cell lectin like receptor (KLRC1) inhibitory molecules were increased in intratumoral NK cells, and CTLA-4 blockade could partially restore MHC class II level on dendritic cell (DC) that was impaired during the DCs/NK cell cross talk. Finally, NK cell density impacts the positive prognostic value of CD8+ T cells in NSCLC. CONCLUSIONS: These findings demonstrate novel molecular cues associated with NK cell inhibitory functions in NSCLC.
Assuntos
Biomarcadores Tumorais/metabolismo , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Transcriptoma/genética , Humanos , Microambiente TumoralRESUMO
Group 3 innate lymphoid cells (ILC3s) critically orchestrate host-microbe interactions in the healthy mammalian intestine and become substantially impaired in the context of inflammatory bowel disease (IBD). However, the molecular pathways controlling the homeostasis of ILC3s remain incompletely defined. Here, we identify that intestinal ILC3s are highly enriched in expression of genes involved in the circadian clock and exhibit diurnal oscillations of these pathways in response to light cues. Classical ILC3 effector functions also exhibited diurnal oscillations, and lineage-specific deletion of BMAL1, a master regulator of the circadian clock, resulted in markedly reduced ILC3s selectively in the intestine. BMAL1-deficient ILC3s exhibit impaired expression of Nr1d1 and Per3, hyperactivation of RORγt-dependent target genes, and elevated proapoptotic pathways. Depletion of the microbiota with antibiotics partially reduced the hyperactivation of BMAL1-deficient ILC3s and restored cellular homeostasis in the intestine. Last, ILC3s isolated from the inflamed intestine of patients with IBD exhibit substantial alterations in expression of several circadian-related genes. Our results collectively define that circadian regulation is essential for the homeostasis of ILC3s in the presence of a complex intestinal microbiota and that this pathway is disrupted in the context of IBD.
Assuntos
Relógios Circadianos/imunologia , Microbioma Gastrointestinal/imunologia , Homeostase/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/imunologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologiaRESUMO
Tertiary lymphoid structures (TLS) are de novo lymphoid formations that are induced within tissues during inflammatory episodes. TLS have been reported at various anatomic sites and in many different contexts like cancer, infections, autoimmunity, graft rejection, and idiopathic diseases. These inducible, ectopic, and transient lymphoid structures exhibit the prototypical architecture found within secondary lymphoid organs (SLO) and have been recently appreciated as a major driver of the local adaptive immune reaction. As TLS emerge within tissues, the isolation in situ and the molecular characterization of these structures are challenging to operate. Laser capture microdissection (LCM) is a powerful tool to isolate selective structural components and cells from frozen or paraffin-embedded tissues. We and other groups previously applied LCM to decipher the molecular network within TLS and uncover their intrinsic connection with the local microenvironment. In this chapter, we describe a detailed LCM method for selecting and isolating TLS in situ to perform comprehensive downstream molecular analyses.
Assuntos
Perfilação da Expressão Gênica , Microdissecção e Captura a Laser , Estruturas Linfoides Terciárias/genética , Estruturas Linfoides Terciárias/patologia , Transcriptoma , Perfilação da Expressão Gênica/métodos , Humanos , Microdissecção e Captura a Laser/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Linfócitos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Microambiente Tumoral/genética , Microambiente Tumoral/imunologiaRESUMO
Purpose: By unlocking antitumor immunity, antibodies targeting programmed cell death 1 (PD-1) exhibit impressive clinical results in non-small cell lung cancer, underlining the strong interactions between tumor and immune cells. However, factors that can robustly predict long-lasting responses are still needed.Experimental Design: We performed in-depth immune profiling of lung adenocarcinoma using an integrative analysis based on immunohistochemistry, flow-cytometry, and transcriptomic data. Tumor mutational status was investigated using next-generation sequencing. The response to PD-1 blockers was analyzed from a prospective cohort according to tumor mutational profiles and PD-L1 expression, and a public clinical database was used to validate the results obtained.Results: We showed that distinct combinations of STK11, EGFR, and TP53 mutations were major determinants of the tumor immune profile (TIP) and of the expression of PD-L1 by malignant cells. Indeed, the presence of TP53 mutations without co-occurring STK11 or EGFR alterations (TP53-mut/STK11-EGFR-WT), independently of KRAS mutations, identified the group of tumors with the highest CD8 T-cell density and PD-L1 expression. In this tumor subtype, pathways related to T-cell chemotaxis, immune cell cytotoxicity, and antigen processing were upregulated. Finally, a prolonged progression-free survival (PFS: HR = 0.32; 95% CI, 0.16-0.63, P < 0.001) was observed in anti-PD-1-treated patients harboring TP53-mut/STK11-EGFR-WT tumors. This clinical benefit was even more remarkable in patients with associated strong PD-L1 expression.Conclusions: Our study reveals that different combinations of TP53, EGFR, and STK11 mutations, together with PD-L1 expression by tumor cells, represent robust parameters to identify best responders to PD-1 blockade. Clin Cancer Res; 24(22); 5710-23. ©2018 AACR.