Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 604(7907): 684-688, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444275

RESUMO

Remarkably well-preserved soft tissues in Mesozoic fossils have yielded substantial insights into the evolution of feathers1. New evidence of branched feathers in pterosaurs suggests that feathers originated in the avemetatarsalian ancestor of pterosaurs and dinosaurs in the Early Triassic2, but the homology of these pterosaur structures with feathers is controversial3,4. Reports of pterosaur feathers with homogeneous ovoid melanosome geometries2,5 suggest that they exhibited limited variation in colour, supporting hypotheses that early feathers functioned primarily in thermoregulation6. Here we report the presence of diverse melanosome geometries in the skin and simple and branched feathers of a tapejarid pterosaur from the Early Cretaceous found in Brazil. The melanosomes form distinct populations in different feather types and the skin, a feature previously known only in theropod dinosaurs, including birds. These tissue-specific melanosome geometries in pterosaurs indicate that manipulation of feather colour-and thus functions of feathers in visual communication-has deep evolutionary origins. These features show that genetic regulation of melanosome chemistry and shape7-9 was active early in feather evolution.


Assuntos
Evolução Biológica , Dinossauros , Plumas , Fósseis , Melanossomas , Animais , Dinossauros/anatomia & histologia , Pigmentação
2.
Nature ; 552(7685): 395-399, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29211712

RESUMO

Maniraptora includes birds and their closest relatives among theropod dinosaurs. During the Cretaceous period, several maniraptoran lineages diverged from the ancestral coelurosaurian bauplan and evolved novel ecomorphologies, including active flight, gigantism, cursoriality and herbivory. Propagation X-ray phase-contrast synchrotron microtomography of a well-preserved maniraptoran from Mongolia, still partially embedded in the rock matrix, revealed a mosaic of features, most of them absent among non-avian maniraptorans but shared by reptilian and avian groups with aquatic or semiaquatic ecologies. This new theropod, Halszkaraptor escuilliei gen. et sp. nov., is related to other enigmatic Late Cretaceous maniraptorans from Mongolia in a novel clade at the root of Dromaeosauridae. This lineage adds an amphibious ecomorphology to those evolved by maniraptorans: it acquired a predatory mode that relied mainly on neck hyperelongation for food procurement, it coupled the obligatory bipedalism of theropods with forelimb proportions that may support a swimming function, and it developed postural adaptations convergent with short-tailed birds.


Assuntos
Aves/anatomia & histologia , Dinossauros/anatomia & histologia , Dinossauros/classificação , Síncrotrons , Adaptação Fisiológica , Animais , Organismos Aquáticos/classificação , Dinossauros/fisiologia , Membro Anterior/anatomia & histologia , Mongólia , Pescoço/anatomia & histologia , Filogenia , Crânio/anatomia & histologia , Natação , Cauda/anatomia & histologia
3.
Nature ; 515(7526): 257-60, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25337880

RESUMO

The holotype of Deinocheirus mirificus was collected by the 1965 Polish-Mongolian Palaeontological Expedition at Altan Uul III in the southern Gobi of Mongolia. Because the holotype consists mostly of giant forelimbs (2.4 m in length) with scapulocoracoids, for almost 50 years Deinocheirus has remained one of the most mysterious dinosaurs. The mosaic of ornithomimosaur and non-ornithomimosaur characters in the holotype has made it difficult to resolve the phylogenetic status of Deinocheirus. Here we describe two new specimens of Deinocheirus that were discovered in the Nemegt Formation of Altan Uul IV in 2006 and Bugiin Tsav in 2009. The Bugiin Tsav specimen (MPC-D 100/127) includes a left forelimb clearly identifiable as Deinocheirus and is 6% longer than the holotype. The Altan Uul IV specimen (MPC-D 100/128) is approximately 74% the size of MPC-D 100/127. Cladistic analysis indicates that Deinocheirus is the largest member of the Ornithomimosauria; however, it has many unique skeletal features unknown in other ornithomimosaurs, indicating that Deinocheirus was a heavily built, non-cursorial animal with an elongate snout, a deep jaw, tall neural spines, a pygostyle, a U-shaped furcula, an expanded pelvis for strong muscle attachments, a relatively short hind limb and broad-tipped pedal unguals. Ecomorphological features in the skull, more than a thousand gastroliths, and stomach contents (fish remains) suggest that Deinocheirus was a megaomnivore that lived in mesic environments.


Assuntos
Dinossauros/anatomia & histologia , Dinossauros/classificação , Fósseis , Animais , Tamanho Corporal , Mongólia , Filogenia , Esqueleto , Crânio/anatomia & histologia , Coluna Vertebral/anatomia & histologia
4.
Exp Dermatol ; 28(4): 503-508, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-28603898

RESUMO

While every jawed vertebrate, or its recent ancestor, possesses teeth, skin appendages are characteristic of the living clades: skin denticles (odontodes) in chondrichthyans, dermal scales in teleosts, ducted multicellular glands in amphibians, epidermal scales in squamates, feathers in birds and hair-gland complexes in mammals, all of them showing a dense periodic patterning. While the odontode origin of teleost scales is generally accepted, the origin of both feather and hair is still debated. They appear long before mammals and birds, at least in the Jurassic in mammaliaforms and in ornithodires (pterosaurs and dinosaurs), and are contemporary to scales of early squamates. Epidermal scales might have appeared several times in evolution, and basal amniotes could not have developed a scaled dry integument, as the function of hair follicle requires its association with glands. In areas such as amnion, cornea or plantar pads, the formation of feather and hair is prevented early in embryogenesis, but can be easily reverted by playing with the Wnt/BMP/Shh pathways, which both imply the plasticity and the default competence of ectoderm. Conserved ectodermal/mesenchymal signalling pathways lead to placode formation, while later the crosstalk differs, as well as the final performing tissue(s): both epidermis and dermis for teeth and odontodes, mostly dermis for teleosts scales and only epidermis for squamate scale, feather and hair. We therefore suggest that tooth, dermal scale, epidermal scale, feather and hair evolved in parallel from a shared placode/dermal cell unit, which was present in a common ancestor, an early vertebrate gnathostome with odontodes, ca. 420 million years ago.


Assuntos
Escamas de Animais/embriologia , Evolução Biológica , Plumas/embriologia , Fósseis , Cabelo/embriologia , Adaptação Fisiológica , Animais
5.
Nature ; 498(7454): 359-62, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23719374

RESUMO

The recent discovery of small paravian theropod dinosaurs with well-preserved feathers in the Middle-Late Jurassic Tiaojishan Formation of Liaoning Province (northeastern China) has challenged the pivotal position of Archaeopteryx, regarded from its discovery to be the most basal bird. Removing Archaeopteryx from the base of Avialae to nest within Deinonychosauria implies that typical bird flight, powered by the forelimbs only, either evolved at least twice, or was subsequently lost or modified in some deinonychosaurians. Here we describe the complete skeleton of a new paravian from the Tiaojishan Formation of Liaoning Province, China. Including this new taxon in a comprehensive phylogenetic analysis for basal Paraves does the following: (1) it recovers it as the basal-most avialan; (2) it confirms the avialan status of Archaeopteryx; (3) it places Troodontidae as the sister-group to Avialae; (4) it supports a single origin of powered flight within Paraves; and (5) it implies that the early diversification of Paraves and Avialae took place in the Middle-Late Jurassic period.


Assuntos
Aves/classificação , Dinossauros/classificação , Fósseis , Filogenia , Animais , Aves/anatomia & histologia , China , Dinossauros/anatomia & histologia , Plumas/anatomia & histologia , Esqueleto
6.
Naturwissenschaften ; 104(9-10): 74, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831510

RESUMO

Genuine fossils with exquisitely preserved plumage from the Late Jurassic and Early Cretaceous of northeastern China have recently revealed that bird-like theropod dinosaurs had long pennaceous feathers along their hindlimbs and may have used their four wings to glide or fly. Thus, it has been postulated that early bird flight might initially have involved four wings (Xu et al. Nature 421:335-340, 2003; Hu et al. Nature 461:640-643, 2009; Han et al. Nat Commun 5:4382, 2014). Here, we describe Serikornis sungei gen. et sp. nov., a new feathered theropod from the Tiaojishan Fm (Late Jurassic) of Liaoning Province, China. Its skeletal morphology suggests a ground-dwelling ecology with no flying adaptations. Our phylogenetic analysis places Serikornis, together with other Late Jurassic paravians from China, as a basal paravians, outside the Eumaniraptora clade. The tail of Serikornis is covered proximally by filaments and distally by slender rectrices. Thin symmetrical remiges lacking barbules are attached along its forelimbs and elongate hindlimb feathers extend up to its toes, suggesting that hindlimb remiges evolved in ground-dwelling maniraptorans before being co-opted to an arboreal lifestyle or flight.


Assuntos
Plumas , Animais , Evolução Biológica , Aves , China , Dinossauros , Fósseis , Filogenia
7.
Biol Lett ; 9(4): 20130021, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23676653

RESUMO

Cretaceous ichthyosaurs have typically been considered a small, homogeneous assemblage sharing a common Late Jurassic ancestor. Their low diversity and disparity have been interpreted as indicative of a decline leading to their Cenomanian extinction. We describe the first post-Triassic ichthyosaur from the Middle East, Malawania anachronus gen. et sp. nov. from the Early Cretaceous of Iraq, and re-evaluate the evolutionary history of parvipelvian ichthyosaurs via phylogenetic and cladogenesis rate analyses. Malawania represents a basal grade in thunnosaurian evolution that arose during a major Late Triassic radiation event and was previously thought to have gone extinct during the Early Jurassic. Its pectoral morphology appears surprisingly archaic, retaining a forefin architecture similar to that of its Early Jurassic relatives. After the initial latest Triassic radiation of early thunnosaurians, two subsequent large radiations produced lineages with Cretaceous representatives, but the radiation events themselves are pre-Cretaceous. Cretaceous ichthyosaurs therefore include distantly related lineages, with contrasting evolutionary histories, and appear more diverse and disparate than previously supposed.


Assuntos
Evolução Biológica , Fósseis , Répteis/classificação , Animais , Especiação Genética , Iraque , Filogenia , Répteis/genética
8.
Prog Brain Res ; 275: 1-23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36841565

RESUMO

Ornithopod dinosaurs were a successful group before they became extinct at the end of the Cretaceous. They were present on every continent, though they were rare in the Southern Hemisphere. We present the results of our work on the brain of these dinosaurs as an attempt to determine which evolutionary trends affected it. Old and new technologies allow us to peer into the skull of long extinct animals and retrieve information about their brain. First we provide a short description of the brain of ornithopod dinosaurs from Europe and Asia, then we sum up the characteristics that can be gathered from it. The presence of valleculae helps us to assess the actual size of the brain with more confidence. The olfactory peduncles are large and these animals had a good sense of smell. There is a trend toward an increase in the size of the cerebral hemispheres, and a more straight-lined brain. The latter can be the result of the ontogeny and the size achieved by the adult animal on the development of the brain. Other characteristics, like the development of the cerebral hemispheres and the encephalization quotient, allude to Hadrosauridae having had cognitive abilities more developed than previously assumed. This is in adequacy with other data from the physical characteristics (e.g., crests) and the social life (e.g., living in herds, communal nests) of these dinosaurs, which denote high and complex behaviors like care for their young, sexual courtship, and gregariousness.


Assuntos
Dinossauros , Animais , Dinossauros/anatomia & histologia , Anatomia Comparada , Fósseis , Encéfalo/anatomia & histologia , Crânio/anatomia & histologia , Evolução Biológica
9.
Biol Lett ; 8(1): 97-100, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21835881

RESUMO

We describe an enormous Late Cretaceous fossil bird from Kazakhstan, known from a pair of edentulous mandibular rami (greater than 275 mm long), which adds significantly to our knowledge of Mesozoic avian morphological and ecological diversity. A suite of autapomorphies lead us to recognize the specimen as a new taxon. Phylogenetic analysis resolves this giant bird deep within Aves as a basal member of Ornithuromorpha. This Kazakh fossil demonstrates that large body size evolved at least once outside modern birds (Neornithes) and reveals hitherto unexpected trophic diversity within Cretaceous Aves.


Assuntos
Evolução Biológica , Aves/anatomia & histologia , Fósseis , Mandíbula/anatomia & histologia , Filogenia , Animais , Cazaquistão , Paleontologia , Especificidade da Espécie
10.
R Soc Open Sci ; 9(5): 211893, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35582660

RESUMO

In fossil tetrapods, limb bone histology is considered the most reliable tool not only for inferring skeletal maturity-a crucial assessment in palaeobiological and evolutionary studies-but also for evaluating the growth dynamics within the ontogenetic window represented by the primary bone cortex. Due to its complex relationship with bone growth and functional maturation, primary cortical vascularity is an indispensable osteohistological character for reconstructing growth dynamics, especially in the context of various developmental strategies along the precocial-altricial spectrum. Using this concept as our working hypothesis, we developed a new quantitative osteohistological parameter, radial porosity profile (RPP), that captures relative cortical porosity changes in limb bones as trajectories. We built a proof-of-concept RPP dataset on extant birds, then added fossil paravian dinosaurs and performed a set of trajectory-grouping analyses to identify potential RPP categories and evaluate them in the context of our ontogeny-developmental strategy working hypothesis. We found that RPPs, indeed, reflect important developmental features within and across elements, specimens and taxa, supporting their analytical power. Our RPPs also revealed unexpected potential osteohistological correlates of growth and functional development of limb bones. The diverse potential applications of RPPs open up new research directions in the evolution of locomotor ontogeny.

11.
Sci Rep ; 11(1): 14722, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282248

RESUMO

The furcula is a distinctive element of the pectoral skeleton in birds, which strengthens the shoulder region to withstand the rigor of flight. Although its origin among theropod dinosaurs is now well-supported, the homology of the furcula relative to the elements of the tetrapod pectoral girdle (i.e., interclavicle vs clavicles) remains controversial. Here, we report the identification of the furcula in the birdlike theropod Halszkaraptor escuilliei. The bone is unique among furculae in non-avian dinosaurs in bearing a visceral articular facet in the hypocleideal end firmly joined to and overlapped by the sternal plates, a topographical pattern that supports the primary homology of the furcula with the interclavicle. The transformation of the interclavicle into the furcula in early theropods is correlated to the loss of the clavicles, and reinforced the interconnection between the contralateral scapulocoracoids, while relaxing the bridge between the scapulocoracoids with the sternum. The function of the forelimbs in theropod ancestors shifted from being a component of the locomotory quadrupedal module to an independent module specialized to grasping. The later evolution of novel locomotory modules among maniraptoran theropods, involving the forelimbs, drove the re-acquisition of a tighter connection between the scapulocoracoids and the interclavicle with the sternal complex.

12.
PeerJ ; 8: e9832, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194351

RESUMO

A new basal ornithopod dinosaur, based on two nearly complete articulated skeletons, is reported from the Lujiatun Beds (Yixian Fm, Lower Cretaceous) of western Liaoning Province (China). Some of the diagnostic features of Changmiania liaoningensis nov. gen., nov. sp. are tentatively interpreted as adaptations to a fossorial behavior, including: fused premaxillae; nasal laterally expanded, overhanging the maxilla; shortened neck formed by only six cervical vertebrae; neural spines of the sacral vertebrae completely fused together, forming a craniocaudally-elongated continuous bar; fused scapulocoracoid with prominent scapular spine; and paired ilia symmetrically inclined dorsomedially, partially covering the sacrum in dorsal view. A phylogenetic analysis places Changmiania liaoningensis as the most basal ornithopod dinosaur described so far. It is tentatively hypothesized that both Changmiania liaoningensis specimens were suddenly entrapped in a collapsed underground burrow while they were resting, which would explain their perfect lifelike postures and the complete absence of weathering and scavenging traces. However, further behavioural inference remains problematic, because those specimens lack extensive sedimentological and taphonomic data, as it is also the case for most specimens collected in the Lujiatun Beds so far.

13.
Data Brief ; 29: 105100, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32055653

RESUMO

Data is presented to explain why birds can recover their ruffled feather vanes by shaking wings and preening feathers with the beak [1]. Presented data includes the SEM microscopic images of rachis, barbs and barbules of pigeon's feather and the images recording the experiments of observing and mimicking the recovering performance of pigeons. Besides, based on the measurement and observation of the micro structure of feathers, the mechanical models of barbules were developed to better understand the wings performance. These high-quality images and models could be used for future research on feathers. Data helps to better understand the micro structure of feathers and the reason birds can fly. Data also support bioinspired mechanical structure development, especially for flapping robot development.

14.
Naturwissenschaften ; 96(4): 495-501, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19089398

RESUMO

A latest Cretaceous (68 to 65 million years ago) vertebrate microfossil assemblage discovered at Kakanaut in northeastern Russia reveals that dinosaurs were still highly diversified in Arctic regions just before the Cretaceous-Tertiary mass extinction event. Dinosaur eggshell fragments, belonging to hadrosaurids and non-avian theropods, indicate that at least several latest Cretaceous dinosaur taxa could reproduce in polar region and were probably year-round residents of high latitudes. Palaeobotanical data suggest that these polar dinosaurs lived in a temperate climate (mean annual temperature about 10 degrees C), but the climate was apparently too cold for amphibians and ectothermic reptiles. The high diversity of Late Maastrichtian dinosaurs in high latitudes, where ectotherms are absent, strongly questions hypotheses according to which dinosaur extinction was a result of temperature decline, caused or not by the Chicxulub impact.


Assuntos
Dinossauros/fisiologia , Alaska , Animais , Regiões Árticas , Canadá , Clima , Dinossauros/genética , Ecossistema , Casca de Ovo , Feminino , Flores , Variação Genética , Geografia , Federação Russa , Árvores
15.
Sci Rep ; 9(1): 20220, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882600

RESUMO

With approximately 1,500 extant species, freshwater crabs (Decapoda: Brachyura) are among the most diverse decapod crustaceans. Nevertheless, their fossil record is extremely limited: only Potamidae, Potamonautidae and Trichodactylidae are reported up to the Eocene of the Neotropics so far. This work documents unusually large decapod claws from the Upper Cretaceous (Campanian) continental deposits of Velaux and vicinity (southern France), in close association with large vertebrate remains. In addition to (1) the systematic assignment of these claws, the study addresses (2) the salinity trends in the deposit environment from its faunal assemblage and the elementary chemical patterns of fossils, and (3) the likely scenario for their auto/allochthony in the Velaux fluvial system. These claws belong to a new taxon, Dinocarcinus velauciensis n. gen. n. sp., referred to as Portunoidea sensu lato, a group of "true" crabs nowadays linked to marine systems. However, the faunal assemblage, the claw taphonomy and the carbonates Y/Ho signatures support their ancient freshwater/terrestrial ecology, making them the oldest reported continental brachyurans and extending the presence of crabs in freshwater environments by 40 Ma. Either as primary or as secondary freshwater crabs, the occurrence of these portunoids in Velaux is an evidence for the independent colonizations of continental environments by multiple brachyuran clades over time, as early as the Campanian.


Assuntos
Osso e Ossos/anatomia & histologia , Braquiúros/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis , Casco e Garras/anatomia & histologia , Animais , Evolução Biológica , Braquiúros/classificação , Dinossauros/classificação , Água Doce , Modelos Biológicos , Paleontologia/métodos , Especificidade da Espécie
16.
PeerJ ; 7: e6239, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723614

RESUMO

Diverse epidermal appendages including grouped filaments closely resembling primitive feathers in non-avian theropods, are associated with skeletal elements in the primitive ornithischian dinosaur Kulindadromeus zabaikalicus from the Kulinda locality in south-eastern Siberia. This discovery suggests that "feather-like" structures did not evolve exclusively in theropod dinosaurs, but were instead potentially widespread in the whole dinosaur clade. The dating of the Kulinda locality is therefore particularly important for reconstructing the evolution of "feather-like" structures in dinosaurs within a chronostratigraphic framework. Here we present the first dating of the Kulinda locality, combining U-Pb analyses (LA-ICP-MS) on detrital zircons and monazites from sedimentary rocks of volcaniclastic origin and palynological observations. Concordia ages constrain the maximum age of the volcaniclastic deposits at 172.8 ± 1.6 Ma, corresponding to the Aalenian (Middle Jurassic). The palynological assemblage includes taxa that are correlated to Bathonian palynozones from western Siberia, and therefore constrains the minimum age of the deposits. The new U-Pb ages, together with the palynological data, provide evidence of a Bathonian age-between 168.3 ± 1.3 Ma and 166.1 ± 1.2 Ma-for Kulindadromeus. This is older than the previous Late Jurassic to Early Cretaceous ages tentatively based on local stratigraphic correlations. A Bathonian age is highly consistent with the phylogenetic position of Kulindadromeus at the base of the neornithischian clade and suggests that cerapodan dinosaurs originated in Asia during the Middle Jurassic, from a common ancestor that closely looked like Kulindadromeus. Our results consequently show that Kulindadromeus is the oldest known dinosaur with "feather-like" structures discovered so far.

17.
Sci Rep ; 8(1): 4263, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511195

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

18.
Sci Rep ; 8(1): 258, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321475

RESUMO

With their elongated forelimbs and variable aerial skills, paravian dinosaurs, a clade also comprising modern birds, are in the hotspot of vertebrate evolutionary research. Inferences on the early evolution of flight largely rely on bone and feather morphology, while osteohistological traits are usually studied to explore life-history characteristics. By sampling and comparing multiple homologous fore- and hind limb elements, we integrate for the first time qualitative and quantitative osteohistological approaches to get insight into the intraskeletal growth dynamics and their functional implications in five paravian dinosaur taxa, Anchiornis, Aurornis, Eosinopteryx, Serikornis, and Jeholornis. Our qualitative assessment implies a considerable diversity in allometric/isometric growth patterns among these paravians. Quantitative analyses show that neither taxa nor homologous elements have characteristic histology, and that ontogenetic stage, element size and the newly introduced relative element precocity only partially explain the diaphyseal histovariability. Still, Jeholornis, the only avialan studied here, is histologically distinct from all other specimens in the multivariate visualizations raising the hypothesis that its bone tissue characteristics may be related to its superior aerial capabilities compared to the non-avialan paravians. Our results warrant further research on the osteohistological correlates of flight and developmental strategies in birds and bird-like dinosaurs.

19.
Sci Rep ; 7(1): 13098, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074952

RESUMO

Rhabdodontidae is a successful clade of ornithopod dinosaurs, characteristic of Late Cretaceous continental faunas in Europe. A new rhabdodontid from the late Campanian, of southern France, Matheronodon provincialis gen. et sp. nov., is characterized by the extreme enlargement of both its maxillary and dentary teeth, correlated to a drastic reduction in the number of maxillary teeth (4 per generation in MMS/VBN-02-102). The interalveolar septa on the maxilla are alternately present or resorbed ventrally so as to be able to lodge such enlarged teeth. The rhabdodontid dentition and masticatory apparatus were adapted for producing a strict and powerful shearing action, resembling a pair of scissors. With their relatively simple dentition, contrasting with the sophisticated dental batteries in contemporary hadrosaurids, Matheronodon and other rhabdodontids are tentatively interpreted as specialized consumers of tough plant parts rich in sclerenchyma fibers, such as Sabalites and Pandanites.


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Dente/anatomia & histologia , Animais , França , Paleontologia
20.
PLoS One ; 10(10): e0138806, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26466354

RESUMO

BACKGROUND: The Late Cretaceous Nemegt Formation, Gobi Desert, Mongolia has already yielded abundant and complete skeletons of the hadrosaur Saurolophus angustirostris, from half-grown to adult individuals. METHODOLOGY/PRINCIPAL FINDINGS: Herein we describe perinatal specimens of Saurolophus angustirostris, associated with fragmentary eggshell fragments. The skull length of these babies is around 5% that of the largest known S. angustirostris specimens, so these specimens document the earliest development stages of this giant hadrosaur and bridge a large hiatus in our knowledge of the ontogeny of S. angustirostris. CONCLUSIONS/SIGNIFICANCE: The studied specimens are likely part of a nest originally located on a riverbank point bar. The perinatal specimens were buried by sediment carried by the river current presumably during the wet summer season. Perinatal bones already displayed diagnostic characters for Saurolophus angustirostris, including premaxillae with a strongly reflected oral margin and upturned premaxillary body in lateral aspect. The absence of a supracranial crest and unfused halves of the cervical neural arches characterize the earliest stages in the ontogeny of S. angustirostris. The eggshell fragments associated with the perinatal individuals can be referred to the Spheroolithus oogenus and closely resemble those found in older formations (e.g. Barun Goyot Fm in Mongolia) or associated with more basal hadrosauroids (Bactrosaurus-Gilmoreosaurus in the Iren Dabasu Fm, Inner Mongolia, China). This observation suggests that the egg microstructure was similar in basal hadrosauroids and more advanced saurolophines. COMPETING INTERESTS: One of the authors (FE) is employed by the commercial organization Eldonia. Eldonia provided support in the form of a salary for FE, but did not have any additional role or influence in the study design, data collection and analysis, decision to publish, or preparation of the manuscript and it does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials.


Assuntos
Ossos da Extremidade Inferior/anatomia & histologia , Ossos da Extremidade Superior/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis , Crânio/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Fatores Etários , Animais , Dinossauros/classificação , Casca de Ovo/anatomia & histologia , Sedimentos Geológicos , Mongólia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA