Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613741

RESUMO

The mechanistic target of rapamycin (mTOR) complex 1, mTORC1, integrates nutrient and growth factor signals with cellular responses and plays critical roles in regulating cell growth, proliferation, and lifespan. mTORC1 signaling has been reported as a central regulator of autophagy by modulating almost all aspects of the autophagic process, including initiation, expansion, and termination. An increasing number of studies suggest that mTORC1 and autophagy are critical for the physiological function of skeletal muscle and are involved in diverse muscle diseases. Here, we review recent insights into the essential roles of mTORC1 and autophagy in skeletal muscles and their implications in human muscle diseases. Multiple inhibitors targeting mTORC1 or autophagy have already been clinically approved, while others are under development. These chemical modulators that target the mTORC1/autophagy pathways represent promising potentials to cure muscle diseases.


Assuntos
Nutrientes , Transdução de Sinais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Autofagia/fisiologia , Músculo Esquelético/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 318(3): H682-H695, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004065

RESUMO

Evidence suggests that mitochondrial network integrity is impaired in cardiomyocytes from failing hearts. While oxidative stress has been implicated in heart failure (HF)-associated mitochondrial remodeling, the effect of mitochondrial-targeted antioxidants, such as mitoquinone (MitoQ), on the mitochondrial network in a model of HF (e.g., pressure overload) has not been demonstrated. Furthermore, the mechanism of this regulation is not completely understood with an emerging role for posttranscriptional regulation via long noncoding RNAs (lncRNAs). We hypothesized that MitoQ preserves mitochondrial fusion proteins (i.e., mitofusin), likely through redox-sensitive lncRNAs, leading to improved mitochondrial network integrity in failing hearts. To test this hypothesis, 8-wk-old C57BL/6J mice were subjected to ascending aortic constriction (AAC), which caused substantial left ventricular (LV) chamber remodeling and remarkable contractile dysfunction in 1 wk. Transmission electron microscopy and immunostaining revealed defective intermitochondrial and mitochondrial-sarcoplasmic reticulum ultrastructure in AAC mice compared with sham-operated animals, which was accompanied by elevated oxidative stress and suppressed mitofusin (i.e., Mfn1 and Mfn2) expression. MitoQ (1.36 mg·day-1·mouse-1, 7 consecutive days) significantly ameliorated LV dysfunction, attenuated Mfn2 downregulation, improved interorganellar contact, and increased metabolism-related gene expression. Moreover, our data revealed that MitoQ alleviated the dysregulation of an Mfn2-associated lncRNA (i.e., Plscr4). In summary, the present study supports a unique mechanism by which MitoQ improves myocardial intermitochondrial and mitochondrial-sarcoplasmic reticulum (SR) ultrastructural remodeling in HF by maintaining Mfn2 expression via regulation by an lncRNA. These findings underscore the important role of lncRNAs in the pathogenesis of HF and the potential of targeting them for effective HF treatment.NEW & NOTEWORTHY We have shown that MitoQ improves cardiac mitochondrial network integrity and mitochondrial-SR alignment in a pressure-overload mouse heart-failure model. This may be occurring partly through preventing the dysregulation of a redox-sensitive lncRNA-microRNA pair (i.e., Plscr4-miR-214) that results in an increase in mitofusin-2 expression.


Assuntos
Antioxidantes/farmacologia , Insuficiência Cardíaca/metabolismo , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ubiquinona/análogos & derivados , Animais , Modelos Animais de Doenças , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxirredução/efeitos dos fármacos , RNA não Traduzido/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/farmacologia
3.
Hepatology ; 69(3): 943-958, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30575985

RESUMO

The fibroblast growth factor (FGF) signaling cascade is a key signaling pathway in hepatocarcinogenesis. We report high FGF receptor (FGFR) expression in 17.7% (11 of 62) of hepatocellular carcinoma (HCC) models. Infigratinib, a pan-FGFR inhibitor, potently suppresses the growth of high-FGFR-expressing and sorafenib-resistant HCCs. Infigratinib inhibits FGFR signaling and its downstream targets, cell proliferation, the angiogenic rescue program, hypoxia, invasion, and metastasis. Infigratinib also induces apoptosis and vessel normalization and improves the overall survival of mice bearing FGFR-driven HCCs. Infigratinib acts in synergy with the microtubule-depolymerizing drug vinorelbine to promote apoptosis, suppress tumor growth, and improve the overall survival of mice. Increased expression levels of FGFR-2 and FGFR-3 through gene amplification correlate with treatment response and may serve as potential biomarkers for patient selection. Conclusion: Treatments with Infigratinib alone or in combination with vinorelbine may be effective in a subset of patients with HCC with FGFR-driven tumors.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Vasos Sanguíneos/efeitos dos fármacos , Carcinoma Hepatocelular/secundário , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos SCID , Compostos de Fenilureia/farmacologia , Pirimidinas/farmacologia
4.
Autophagy ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963021

RESUMO

The commonality between various muscle diseases is the loss of muscle mass, function, and regeneration, which severely restricts mobility and impairs the quality of life. With muscle stem cells (MuSCs) playing a key role in facilitating muscle repair, targeting regulators of muscle regeneration has been shown to be a promising therapeutic approach to repair muscles. However, the underlying molecular mechanisms driving muscle regeneration are complex and poorly understood. Here, we identified a new regulator of muscle regeneration, Deaf1 (Deformed epidermal autoregulatory factor-1) - a transcriptional factor downstream of foxo signaling. We showed that Deaf1 is transcriptionally repressed by FOXOs and that DEAF1 targets to Pik3c3 and Atg16l1 promoter regions and suppresses their expression. Deaf1 depletion therefore induces macroautophagy/autophagy, which in turn blocks MuSC survival and differentiation. In contrast, Deaf1 overexpression inactivates autophagy in MuSCs, leading to increased protein aggregation and cell death. The fact that Deaf1 depletion and its overexpression both lead to defects in muscle regeneration highlights the importance of fine tuning DEAF1-regulated autophagy during muscle regeneration. We further showed that Deaf1 expression is altered in aging and cachectic MuSCs. Manipulation of Deaf1 expression can attenuate muscle atrophy and restore muscle regeneration in aged mice or mice with cachectic cancers. Together, our findings unveil an evolutionarily conserved role for DEAF1 in muscle regeneration, providing insights into the development of new therapeutic strategies against muscle atrophy.

5.
Nat Commun ; 14(1): 2162, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061542

RESUMO

Generating reference maps of interactome networks illuminates genetic studies by providing a protein-centric approach to finding new components of existing pathways, complexes, and processes. We apply state-of-the-art methods to identify binary protein-protein interactions (PPIs) for Drosophila melanogaster. Four all-by-all yeast two-hybrid (Y2H) screens of > 10,000 Drosophila proteins result in the 'FlyBi' dataset of 8723 PPIs among 2939 proteins. Testing subsets of data from FlyBi and previous PPI studies using an orthogonal assay allows for normalization of data quality; subsequent integration of FlyBi and previous data results in an expanded binary Drosophila reference interaction network, DroRI, comprising 17,232 interactions among 6511 proteins. We use FlyBi data to generate an autophagy network, then validate in vivo using autophagy-related assays. The deformed wings (dwg) gene encodes a protein that is both a regulator and a target of autophagy. Altogether, these resources provide a foundation for building new hypotheses regarding protein networks and function.


Assuntos
Proteínas de Drosophila , Mapas de Interação de Proteínas , Animais , Mapas de Interação de Proteínas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mapeamento de Interação de Proteínas/métodos , Técnicas do Sistema de Duplo-Híbrido
6.
Cells ; 11(22)2022 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-36429016

RESUMO

Lung cancer is the leading cause of cancer death in the world. In particular, non-small-cell lung cancer (NSCLC) represents the majority of the lung cancer population. Advances in DNA sequencing technologies have significantly contributed to revealing the roles, functions and mechanisms of gene mutations. However, the driver mutations that cause cancers and their pathologies remain to be explored. Here, we performed next-generation sequencing (NGS) on tumor tissues isolated from 314 Chinese NSCLC patients and established the mutational landscape in NSCLC. Among 656 mutations, we identified TP53-p.Glu358Val as a driver mutation in lung cancer and found that it activates mitophagy to sustain cancer cell growth. In support of this finding, mice subcutaneously implanted with NSCLC cells expressing TP53-p.Glu358Val developed larger tumors compared to wild-type cells. The pharmaceutical inhibition of autophagy/mitophagy selectively suppresses the cell proliferation of TP53-null or TP53-p.Glu358Val-expressing lung cancer cells. Together, our study characterizes a new TP53 mutation identified from Chinese lung cancer patients and uncovers its roles in regulating mitophagy, providing a new insight into NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Genes p53 , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mitofagia/genética , Mutação/genética , Proteína Supressora de Tumor p53/genética , Humanos
7.
Int J Oncol ; 54(3): 1123-1133, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30747223

RESUMO

Mutations affecting the Wnt/ß­catenin pathway have been identified in 26­40% of hepatocellular carcinoma (HCC) cases. Aberrant activation of this pathway leads to uncontrolled cell proliferation and survival. Thus, identifying Wnt/ß­catenin pathway inhibitors may benefit a subset of patients with HCC. In the present study, the effects of sorafenib and a MEK inhibitor on tumor growth and Wnt/ß­catenin signaling in HCC models were evaluated. A ß­catenin mutant and ß­catenin wild­type HCC models were treated once daily with i) 10 mg/kg sorafenib, ii) 15 mg/kg refametinib (or 25 mg/kg selumetinib), or iii) sorafenib/refametinib. Western blotting was employed to determine changes in biomarkers relevant to Wnt/ß­catenin signaling. Apoptosis, cell proliferation and ß­catenin localization were analyzed by immunohistochemistry. Sorafenib/refametinib markedly inhibited tumor growth and cell proliferation, and caused cell death in naïve and sorafenib­resistant HCC models. Despite similar total ß­catenin levels, significant reductions in phosphorylated (p)­RanBP3 Ser58, p­ß­catenin Tyr142, active ß­catenin and ß­catenin target genes were observed in sorafenib/refametinib­treated tumors. Greater levels of ß­catenin in sorafenib/refametinib­treated tumors were accumulated at the membrane, as compared with in the control. In vitro, sorafenib/refametinib inhibited the Wnt/ß­catenin pathway and suppressed Wnt­3A­induced p­low­density lipoprotein receptor­related protein 6 Ser1490, p­RanBP3 Ser58 and p­ß­catenin Tyr142 in HCC cells. Combination of sorafenib and refametinib inhibits the growth of naïve and sorafenib resistant HCC tumors in association with active suppression of ß­catenin signaling regardless of ß­catenin mutational status. Thus, the sorafenib/MEK inhibitor combination may represent an alternative treatment for patients with HCC whose tumors develop resistance to sorafenib therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Benzimidazóis/administração & dosagem , Difenilamina/administração & dosagem , Difenilamina/análogos & derivados , Humanos , Masculino , Camundongos , Camundongos SCID , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Sorafenibe/administração & dosagem , Sulfonamidas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Redox Biol ; 21: 101100, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30641298

RESUMO

Increasing evidence indicates that mitochondrial-associated redox signaling contributes to the pathophysiology of heart failure (HF). The mitochondrial-targeted antioxidant, mitoquinone (MitoQ), is capable of modifying mitochondrial signaling and has shown beneficial effects on HF-dependent mitochondrial dysfunction. However, the potential therapeutic impact of MitoQ-based mitochondrial therapies for HF in response to pressure overload is reliant upon demonstration of improved cardiac contractile function and suppression of deleterious cardiac remodeling. Using a new (patho)physiologically relevant model of pressure overload-induced HF we tested the hypothesis that MitoQ is capable of ameliorating cardiac contractile dysfunction and suppressing fibrosis. To test this C57BL/6J mice were subjected to left ventricular (LV) pressure overload by ascending aortic constriction (AAC) followed by MitoQ treatment (2 µmol) for 7 consecutive days. Doppler echocardiography showed that AAC caused severe LV dysfunction and hypertrophic remodeling. MitoQ attenuated pressure overload-induced apoptosis, hypertrophic remodeling, fibrosis and LV dysfunction. Profibrogenic transforming growth factor-ß1 (TGF-ß1) and NADPH oxidase 4 (NOX4, a major modulator of fibrosis related redox signaling) expression increased markedly after AAC. MitoQ blunted TGF-ß1 and NOX4 upregulation and the downstream ACC-dependent fibrotic gene expressions. In addition, MitoQ prevented Nrf2 downregulation and activation of TGF-ß1-mediated profibrogenic signaling in cardiac fibroblasts (CF). Finally, MitoQ ameliorated the dysregulation of cardiac remodeling-associated long noncoding RNAs (lncRNAs) in AAC myocardium, phenylephrine-treated cardiomyocytes, and TGF-ß1-treated CF. The present study demonstrates for the first time that MitoQ improves cardiac hypertrophic remodeling, fibrosis, LV dysfunction and dysregulation of lncRNAs in pressure overload hearts, by inhibiting the interplay between TGF-ß1 and mitochondrial associated redox signaling.


Assuntos
Miocárdio/metabolismo , Miocárdio/patologia , Compostos Organofosforados/farmacologia , Ubiquinona/análogos & derivados , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Fibroblastos , Fibrose , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Imuno-Histoquímica , Masculino , Camundongos , Modelos Biológicos , Transdução de Sinais , Estresse Mecânico , Fator de Crescimento Transformador beta/metabolismo , Ubiquinona/farmacologia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Remodelação Ventricular
9.
Sci Rep ; 7(1): 1531, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28484220

RESUMO

Channelrhodopsin-2 (ChR2)-based optogenetic technique has been increasingly applied to cardiovascular research. However, the potential effects of ChR2 protein overexpression on cardiomyocytes are not completely understood. The present work aimed to examine how the doxycycline-inducible lentiviral-mediated ChR2 expression may affect cell viability and electrophysiological property of neonatal rat ventricular myocyte (NRVM) cultures. Primary NVRMs were infected with lentivirus containing ChR2 or YFP gene and subjected to cytotoxicity analysis. ChR2-expressing cultures were then paced electrically or optically with a blue light-emitting diode, with activation spread recorded simultaneously using optical mapping. Results showed that ChR2 could be readily transduced to NRVMs by the doxycycline-inducible lentiviral system; however, high-level ChR2 (but not YFP) expression was associated with substantial cytotoxicity, which hindered optical pacing. Application of bromodeoxyuridine significantly reduced cell damage, allowing stimulation with light. Simultaneous optical Vm mapping showed that conduction velocity, action potential duration, and dVm/dtmax were similar in ChR2-expressing and control cultures. Finally, the ChR2-expressing cultures could be optically paced at multiple sites, with significantly reduced overall activation time. In summary, we demonstrated that inducible lentiviral-mediated ChR2 overexpression might cause cytotoxicity in NRVM cultures, which could be alleviated without impairing electrophysiological function, allowing simultaneous optical pacing and Vm mapping.


Assuntos
Channelrhodopsins/metabolismo , Fenômenos Eletrofisiológicos , Ventrículos do Coração/citologia , Miócitos Cardíacos/citologia , Animais , Animais Recém-Nascidos , Artefatos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Lentivirus/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos Sprague-Dawley , Transdução Genética , Imagens com Corantes Sensíveis à Voltagem
10.
Cardiovasc Res ; 109(1): 79-89, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26433944

RESUMO

AIMS: Studies in guinea-pig cardiomyocytes show that reactive oxygen species (ROS) produced by a few mitochondria can propagate to their neighbours, triggering synchronized, cell-wide network oscillations via an ROS-induced ROS release (RIRR) mechanism. How mitochondria in cardiomyocytes from failing hearts (HF) respond to local oxidative stress perturbations has not been investigated. Since mitochondrial ultrastructure is reportedly disrupted in HF, and propagation of ROS signals depends on mitochondrial network integrity, we hypothesized that the laser flash-induced RIRR is altered in HF. METHODS AND RESULTS: To test the hypothesis, pressure-overload HF was induced in guinea pigs by ascending aortic constriction leading to left ventricular dilatation and decreased ejection fraction after 8 weeks. Isolated cardiomyocytes were studied with two-photon/confocal microscopy to determine their basal oxidative stress and propensity to undergo mitochondrial depolarization/oscillations in response to local laser flash stimulations. The expression of mitofusin proteins and mitochondrial network structure were also analysed. Results showed that HF cardiomyocytes had higher baseline ROS levels and less reduced glutathione, and were more prone to laser flash-induced mitochondrial depolarization. In contrast, the delay between the laser flash and synchronized cell-wide network oscillations was prolonged in HF myocytes compared with shams, and the spatial extent of coupling was diminished, suggesting dampened RIRR and ROS signal propagation. In addition, the expressions of mitofusin proteins in HF myocardium were down-regulated compared with these from sham-operated animals, and the mitochondrial network structure altered. CONCLUSION: The disrupted inter-mitochondrial tethering and loss of structural organization may underlie decreased ROS-dependent mitochondrial coupling in HF.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Mitocôndrias/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Cobaias , Mitocôndrias/ultraestrutura , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
11.
Free Radic Biol Med ; 52(9): 2047-56, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22361747

RESUMO

In type 1 diabetes (T1D), reactive oxygen species (ROS) and proinflammatory cytokines produced by macrophages and other innate immune cells destroy pancreatic ß cells while promoting autoreactive T cell maturation. Superoxide-deficient nonobese diabetic mice (NOD.Ncf1(m1J)) are resistant to spontaneous diabetes, revealing the integral role of ROS signaling in T1D. Here, we evaluate the innate immune activation state of bone marrow-derived macrophages (BM-Mϕ) from NOD and NOD.Ncf1(m1J) mice after poly(I:C)-induced Toll-like receptor 3 (TLR3) signaling. We show that ROS synthesis is required for efficient activation of the NF-κB signaling pathway and concomitant expression of TLR3 and the cognate adaptor molecule, TRIF. Poly(I:C)-stimulated NOD.Ncf1(m1J) BM-Mϕ exhibited a 2- and 10-fold decrease in TNF-α and IFN-ß proinflammatory cytokine synthesis, respectively, in contrast to NOD BM-Mϕ. Optimal expression of IFN-α/ß is not solely dependent on superoxide synthesis, but requires p47(phox) to function in a NOX-independent manner to mediate type I interferon synthesis. Interestingly, MHC-II I-A(g7) expression necessary for CD4 T cell activation is increased 2-fold relative to NOD, implicating a role for superoxide in I-A(g7) downregulation. These findings suggest that defective innate immune-pattern-recognition receptor activation and subsequent decrease in TNF-α and IFN-ß proinflammatory cytokine synthesis necessary for autoreactive T cell maturation may contribute to the T1D protection observed in NOD.Ncf1(m1J) mice.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Imunidade Inata , Macrófagos/metabolismo , Transdução de Sinais/fisiologia , Superóxidos/metabolismo , Receptor 3 Toll-Like/fisiologia , Animais , Diabetes Mellitus Experimental/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos NOD , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA