Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 32(4): 34, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33763760

RESUMO

Synthetic polymers remain to be a major choice for scaffold fabrication due to their structural stability and mechanical strength. However, the lack of functional moieties limits their application for cell-based therapies which necessitate modification and functionalization. Blending synthetic polymers with natural components is a simple and effective way to achieve the desired biological properties for a scaffold. Herein, nanofibrous mats made of polycaprolactone (PCL) and egg white protein (EWP) blend were developed and further evaluated for use as a scaffold for tissue engineering applications. Homogeneous distribution of EWP was achieved throughout the nanofibrous mats, as shown by immunohistochemistry. ATR-FTIR analysis and contact angle measurements have further confirmed the presence of EWP on the surface of the samples. The swelling test showed that PCL/EWP nanofibers have higher water uptake than PCL nanofibrous mats. Also, EWP addition on the nanofibrous mats resulted in an increase in the tensile strength and Young's modulus of the mats, indicating that the presence of protein can greatly enhance the mechanical properties of the mats. A significantly higher, more uniform, and dispersed cell spreading was observed on days 7 and 14 than that on neat PCL mats, demonstrating the importance of providing the required cues for cell homing by the availability of EWP. Hence, EWP is shown to be a simple and low-cost source for the functionalization of PCL nanofibrous mats. EWP is, therefore, a facile candidate to enhance cellular interactions of synthetic polymers for a wide range of tissue engineering applications.


Assuntos
Proteínas do Ovo/química , Nanofibras/química , Poliésteres/química , Polímeros/química , Engenharia Tecidual/instrumentação , Adipócitos/citologia , Tecido Adiposo/citologia , Animais , Proliferação de Células , Sobrevivência Celular , Galinhas , Ovos , Módulo de Elasticidade , Humanos , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Faloidina/química , Medicina Regenerativa/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Resistência à Tração , Engenharia Tecidual/métodos , Alicerces Teciduais , Água/química
2.
J Mater Sci Mater Med ; 32(7): 73, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34152502

RESUMO

Skeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.


Assuntos
Biomassa , Carbono/química , Mioblastos/citologia , Impressão Tridimensional , Alga Marinha/química , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Catálise , Linhagem Celular , Condutividade Elétrica , Eletroquímica , Camundongos , Músculo Esquelético/fisiologia , Mioblastos/metabolismo , Nanofibras/química , Nanotubos de Carbono/química , Poliésteres/química , Regeneração , Análise Espectral Raman , Estresse Mecânico
3.
ACS Biomater Sci Eng ; 10(3): 1607-1619, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38416687

RESUMO

Encapsulating multiple growth factors within a scaffold enhances the regenerative capacity of engineered bone grafts through their localization and controls the spatiotemporal release profile. In this study, we bioprinted hybrid bone grafts with an inherent built-in controlled growth factor delivery system, which would contribute to vascularized bone formation using a single stem cell source, human adipose-derived stem/stromal cells (ASCs) in vitro. The strategy was to provide precise control over the ASC-derived osteogenesis and angiogenesis at certain regions of the graft through the activity of spatially positioned microencapsulated BMP-2 and VEGF within the osteogenic and angiogenic bioink during bioprinting. The 3D-bioprinted vascularized bone grafts were cultured in a perfusion bioreactor. Results proved localized expression of osteopontin and CD31 by the ASCs, which was made possible through the localized delivery activity of the built-in delivery system. In conclusion, this approach provided a methodology for generating off-the-shelf constructs for vascularized bone regeneration and has the potential to enable single-step, in situ bioprinting procedures for creating vascularized bone implants when applied to bone defects.


Assuntos
Bioimpressão , Humanos , Engenharia Tecidual/métodos , Osso e Ossos , Peptídeos e Proteínas de Sinalização Intercelular , Células Estromais/transplante
4.
ACS Biomater Sci Eng ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875708

RESUMO

Mg-based biodegradable metallic implants are gaining increased attraction for applications in orthopedics and dentistry. However, their current applications are hampered by their high rate of corrosion, degradation, and rapid release of ions and gas bubbles into the physiological medium. The aim of the present study is to investigate the osteogenic and angiogenic potential of coated Mg-based implants in a sheep cranial defect model. Although their osteogenic potential was studied to some extent, their potential to regenerate vascularized bone formation was not studied in detail. We have studied the potential of magnesium-calcium (MgCa)-based alloys modified with zinc (Zn)- or gallium (Ga)-doped calcium phosphate (CaP) coatings as a strategy to control their degradation rate while enhancing bone regeneration capacity. MgCa and its implants with CaP coatings (MgCa/CaP) as undoped or as doped with Zn or Ga (MgCa/CaP + Zn and MgCa/CaP + Ga, respectively) were implanted in bone defects created in the sheep cranium. MgCa implants degraded faster than the others at 4 weeks postop and the weight loss was ca. 50%, while it was ca. 15% for MgCa/CaP and <10% in the presence of Zn and Ga with CaP coating. Scanning electron microscopy (SEM) analysis of the implant surfaces also revealed that the MgCa implants had the largest degree of structural breakdown of all the groups. Radiological evaluation revealed that surface modification with CaP to the MgCa implants induced better bone regeneration within the defects as well as the enhancement of bone-implant surface integration. Bone volume (%) within the defect was ca. 25% in the case of MgCa/CaP + Ga, while it was around 15% for undoped MgCa group upon micro-CT evaluation. This >1.5-fold increase in bone regeneration for MgCa/CaP + Ga implant was also observed in the histopathological examination of the H&E- and Masson's trichrome-stained sections. Immunohistochemical analysis of the bone regeneration (antiosteopontin) and neovascularization (anti-CD31) at the defect sites revealed >2-fold increase in the expression of the markers in both Ga- and Zn-doped, CaP-coated implants. Zn-doped implants further presented low inflammatory reaction, notable bone regeneration, and neovascularization among all the implant groups. These findings indicated that Ga- and Zn-doped CaP coating is an important strategy to control the degradation rate as well as to achieve enhanced bone regeneration capacity of the implants made of Mg-based alloys.

5.
ACS Appl Bio Mater ; 7(4): 2054-2069, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520346

RESUMO

Cell migration is vital for many fundamental biological processes and human pathologies throughout our life. Dynamic molecular changes in the tissue microenvironment determine modifications of cell movement, which can be reflected either individually or collectively. Endothelial cell (EC) migratory adaptation occurs during several events and phenomena, such as endothelial injury, vasculogenesis, and angiogenesis, under both normal and highly inflammatory conditions. Several advantageous processes can be supported by biomaterials. Endothelial cells are used in combination with various types of biomaterials to design scaffolds promoting the formation of mature blood vessels within tissue engineered structures. Appropriate selection, in terms of scaffolding properties, can promote desirable cell behavior to varying degrees. An increasing amount of research could lead to the creation of the perfect biomaterial for regenerative medicine applications. In this review, we summarize the state of knowledge regarding the possible systems by which inflammation may influence endothelial cell migration. We also describe the fundamental forces governing cell motility with a specific focus on ECs. Additionally, we discuss the biomaterials used for EC culture, which serve to enhance the proliferative, proangiogenic, and promigratory potential of cells. Moreover, we introduce the mechanisms of cell movement and highlight the significance of understanding these mechanisms in the context of designing scaffolds that promote tissue regeneration.


Assuntos
Materiais Biocompatíveis , Células Endoteliais , Humanos , Materiais Biocompatíveis/química , Células Endoteliais/metabolismo , Engenharia Tecidual , Inflamação , Movimento Celular
6.
Biomed Mater ; 18(3)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37001545

RESUMO

The parathyroid glands are localized at the back of the thyroid glands in the cervical region and are responsible for regulation of the calcium level in the blood, through specialized cells that sense Ca2+and secrete parathyroid hormone (PTH) in response to a decline in its serum level. PTH stimulates the skeleton, kidneys and intestines and controls the level of Ca2+through specialized activities. Iatrogenic removal of the parathyroid gland, as well as damage to its vascular integrity during cauterization are some of the common complications of thyroid surgery. Therefore, regeneration and/or replacement of malfunctioning parathyroid tissue is required. Tissue engineering is an emerging and promising field for patients with organ failure with recent pioneering clinical applications. The success of tissue engineering strategy depends on the use of proper cells, bioactive factors that stimulate the activities of these cells and scaffolds that are produced to recapitulate the tissue structure and support the function of the engineered tissues. 3D printing is a developing strategy for the production of these scaffolds by providing a delicate control over their structure and properties. In this study, human primary parathyroid cells were successfully isolated and their viability and ability to secrete PTH upon stimulation with different levels of Ca2+were shownin vitro. These cells were then seeded onto 3D printed alginate scaffolds and 3D bioprinted within alginate bioink, and cell viability as well as the ability to secrete PTH upon stimulation were also demonstrated. Therefore, functional hormone-active parathyroid tissue substitute was engineeredin vitrothrough 3D printed hydrogels and autologous cells.


Assuntos
Glândulas Paratireoides , Engenharia Tecidual , Humanos , Hidrogéis/química , Hormônio Paratireóideo , Alginatos/química , Impressão Tridimensional , Alicerces Teciduais/química
7.
ACS Appl Mater Interfaces ; 14(1): 104-122, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958199

RESUMO

In orthopedic surgery, metals are preferred to support or treat damaged bones due to their high mechanical strength. However, the necessity for a second surgery for implant removal after healing creates problems. Therefore, biodegradable metals, especially magnesium (Mg), gained importance, although their extreme susceptibility to galvanic corrosion limits their applications. The focus of this study was to control the corrosion of Mg and enhance its biocompatibility. For this purpose, surfaces of magnesium-calcium (MgCa1) alloys were modified with calcium phosphate (CaP) or CaP doped with zinc (Zn) or gallium (Ga) via microarc oxidation. The effects of surface modifications on physical, chemical, and mechanical properties and corrosion resistance of the alloys were studied using surface profilometry, goniometry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), nanoindentation, and electrochemical impedance spectroscopy (EIS). The coating thickness was about 5-8 µm, with grain sizes of 43.1 nm for CaP coating and 28.2 and 58.1 nm for Zn- and Ga-doped coatings, respectively. According to EIS measurements, the capacitive response (Yc) decreased from 11.29 to 8.72 and 0.15 Ω-1 cm-2 sn upon doping with Zn and Ga, respectively. The Ecorr value, which was -1933 mV for CaP-coated samples, was found significantly electropositive at -275 mV for Ga-doped ones. All samples were cytocompatible according to indirect tests. In vitro culture with Saos-2 cells led to changes in the surface compositions of the alloys. The numbers of cells attached to the Zn-doped (2.6 × 104 cells/cm2) and Ga-doped (6.3 × 104 cells/cm2) coatings were higher than that on the surface of the undoped coating (1.0 × 103 cells/cm2). Decreased corrosivity and enhanced cell affinity of the modified MgCa alloys (CaP coated and Zn and Ga doped, with Ga-doped ones having the greatest positive effect) make them novel and promising candidates as biodegradable metallic implant materials for the treatment of bone damages and other orthopedic applications.


Assuntos
Ligas/química , Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/química , Implantes Absorvíveis , Ligas/toxicidade , Animais , Cálcio/química , Cálcio/toxicidade , Fosfatos de Cálcio/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/toxicidade , Corrosão , Módulo de Elasticidade , Gálio/química , Gálio/toxicidade , Humanos , Magnésio/química , Magnésio/toxicidade , Teste de Materiais , Camundongos , Molhabilidade , Zinco/química , Zinco/toxicidade
8.
ACS Biomater Sci Eng ; 7(11): 5189-5205, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34661388

RESUMO

Effective skeletal muscle tissue engineering relies on control over the scaffold architecture for providing muscle cells with the required directionality, together with a mechanical property match with the surrounding tissue. Although recent advances in 3D printing fulfill the first requirement, the available synthetic polymers either are too rigid or show unfavorable surface and degradation profiles for the latter. In addition, natural polymers that are generally used as hydrogels lack the required mechanical stability to withstand the forces exerted during muscle contraction. Therefore, one of the most important challenges in the 3D printing of soft and elastic tissues such as skeletal muscle is the limitation of the availability of elastic, durable, and biodegradable biomaterials. Herein, we have synthesized novel, biocompatible and biodegradable, elastomeric, segmented polyurethane and polyurethaneurea (TPU) copolymers which are amenable for 3D printing and show high elasticity, low modulus, controlled biodegradability, and improved wettability, compared to conventional polycaprolactone (PCL) and PCL-based TPUs. The degradation profile of the 3D printed TPU scaffold was in line with the potential tissue integration and scaffold replacement process. Even though TPU attracts macrophages in 2D configuration, its 3D printed form showed limited activated macrophage adhesion and induced muscle-like structure formation by C2C12 mouse myoblasts in vitro, while resulting in a significant increase in muscle regeneration in vivo in a tibialis anterior defect in a rat model. Effective muscle regeneration was confirmed with immunohistochemical assessment as well as evaluation of electrical activity produced by regenerated muscle by EMG analysis and its force generation via a custom-made force transducer. Micro-CT evaluation also revealed production of more muscle-like structures in the case of implantation of cell-laden 3D printed scaffolds. These results demonstrate that matching the tissue properties for a given application via use of tailor-made polymers can substantially contribute to the regenerative outcomes of 3D printed tissue engineering scaffolds.


Assuntos
Elastômeros , Poliuretanos , Animais , Camundongos , Músculo Esquelético , Impressão Tridimensional , Ratos
9.
Biomed Mater ; 14(2): 025014, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30665203

RESUMO

A key challenge in skeletal muscle tissue engineering is the choice of a proper scaffolding material as it should demonstrate elastic behavior to withstand and support the dynamic loading of the tissue microenvironment while being biodegradable and biocompatible. In this study, we tested the applicability of a novel biodegradable polyurethane (PU) elastomer chain extended with fibrinogen (Fib) to fulfill these requirements. Biodegradable polyurethane-fibrinogen (PU-Fib) elastomers were synthesized by step-wise condensation polymerization. Firstly, PU prepolymer was synthesized and then Fib was integrated into PU prepolymer during the second step of polymerization. The chemical, thermal, viscoelastic, mechanical and biodegradation properties of PU-Fib were characterized. FTIR-ATR spectrum showed amide bands specific to PU and Fib, DSC thermograms showed the suitable integration between the components. Dynamic mechanical analysis revealed Tg and Tα* transitions at 64.5 °C and 38.4 °C, respectively. PU and Fib had shown chemically compatible interactions and when compared to PCL, PU-Fib possessed viscoelastic properties more suitable to the native tissue. PU-Fib films were produced and seeded with C2C12 mouse myoblasts. Uniaxial cyclic stretch was applied to the cell seeded films for 21 d to mimic the native dynamic tissue microenvironment. Cell proliferation, viability and the expression of muscle-specific markers (immunofluorescent staining for myogenin and myosin heavy chain) were assessed. Myoblasts proliferated well on PU-Fib films; aligned parallel along their long edge, and express myogenic markers under biomimetic dynamic culture. It was possible to culture myoblasts with high viability on PU-Fib elastomeric films mimicking native muscle microenvironment.


Assuntos
Materiais Biocompatíveis/química , Músculo Esquelético/metabolismo , Poliuretanos/química , Engenharia Tecidual/métodos , Animais , Proliferação de Células , Sobrevivência Celular , Elasticidade , Elastômeros/química , Fibroblastos/metabolismo , Imuno-Histoquímica , Camundongos , Mioblastos/metabolismo , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Alicerces Teciduais/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA