Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 49(3): 236-246, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38185606

RESUMO

Circadian clocks evolved in diverse organisms as an adaptation to the daily swings in ambient light and temperature that derive from Earth's rotation. These timing systems, based on intracellular molecular oscillations, synchronize organisms' behavior and physiology with the 24-h environmental rhythm. The cyanobacterial clock serves as a special model for understanding circadian rhythms because it can be fully reconstituted in vitro. This review summarizes recent advances that leverage new biochemical, biophysical, and mathematical approaches to shed light on the molecular mechanisms of cyanobacterial Kai proteins that support the clock, and their homologues in other bacteria. Many questions remain in circadian biology, and the tools developed for the Kai system will bring us closer to the answers.


Assuntos
Relógios Circadianos , Cianobactérias , Proteínas de Bactérias/metabolismo , Ritmo Circadiano , Cianobactérias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética
2.
Proc Natl Acad Sci U S A ; 120(13): e2221453120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940340

RESUMO

The circadian system of the cyanobacterium Synechococcus elongatus PCC 7942 relies on a three-protein nanomachine (KaiA, KaiB, and KaiC) that undergoes an oscillatory phosphorylation cycle with a period of ~24 h. This core oscillator can be reconstituted in vitro and is used to study the molecular mechanisms of circadian timekeeping and entrainment. Previous studies showed that two key metabolic changes that occur in cells during the transition into darkness, changes in the ATP/ADP ratio and redox status of the quinone pool, are cues that entrain the circadian clock. By changing the ATP/ADP ratio or adding oxidized quinone, one can shift the phase of the phosphorylation cycle of the core oscillator in vitro. However, the in vitro oscillator cannot explain gene expression patterns because the simple mixture lacks the output components that connect the clock to genes. Recently, a high-throughput in vitro system termed the in vitro clock (IVC) that contains both the core oscillator and the output components was developed. Here, we used IVC reactions and performed massively parallel experiments to study entrainment, the synchronization of the clock with the environment, in the presence of output components. Our results indicate that the IVC better explains the in vivo clock-resetting phenotypes of wild-type and mutant strains and that the output components are deeply engaged with the core oscillator, affecting the way input signals entrain the core pacemaker. These findings blur the line between input and output pathways and support our previous demonstration that key output components are fundamental parts of the clock.


Assuntos
Relógios Circadianos , Synechococcus , Relógios Circadianos/genética , Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Fosforilação , Trifosfato de Adenosina/metabolismo
3.
Cell ; 140(4): 529-39, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20178745

RESUMO

A circadian clock coordinates physiology and behavior in diverse groups of living organisms. Another major cyclic cellular event, the cell cycle, is regulated by the circadian clock in the few cases where linkage of these cycles has been studied. In the cyanobacterium Synechococcus elongatus, the circadian clock gates cell division by an unknown mechanism. Using timelapse microscopy, we confirm the gating of cell division in the wild-type and demonstrate the regulation of cytokinesis by key clock components. Specifically, a state of the oscillator protein KaiC that is associated with elevated ATPase activity closes the gate by acting through a known clock output pathway to inhibit FtsZ ring formation at the division site. An activity that stimulates KaiC phosphorylation independently of the KaiA protein was also uncovered. We propose a model that separates the functions of KaiC ATPase and phosphorylation in cell division gating and other circadian behaviors.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano , Synechococcus/citologia , Synechococcus/fisiologia , Relógios Biológicos , Proteínas do Citoesqueleto/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosforilação , Proteínas Quinases/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(45): e2211789119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322730

RESUMO

UV radiation (UVR) has significant physiological effects on organisms living at or near the Earth's surface, yet the full suite of genes required for fitness of a photosynthetic organism in a UVR-rich environment remains unknown. This study reports a genome-wide fitness assessment of the genes that affect UVR tolerance under environmentally relevant UVR dosages in the model cyanobacterium Synechococcus elongatus PCC 7942. Our results highlight the importance of specific genes that encode proteins involved in DNA repair, glutathione synthesis, and the assembly and maintenance of photosystem II, as well as genes that encode hypothetical proteins and others without an obvious connection to canonical methods of UVR tolerance. Disruption of a gene that encodes a leucyl aminopeptidase (LAP) conferred the greatest UVR-specific decrease in fitness. Enzymatic assays demonstrated a strong pH-dependent affinity of the LAP for the dipeptide cysteinyl-glycine, suggesting an involvement in glutathione catabolism as a function of night-time cytosolic pH level. A low differential expression of the LAP gene under acute UVR exposure suggests that its relative importance would be overlooked in transcript-dependent screens. Subsequent experiments revealed a similar UVR-sensitivity phenotype in LAP knockouts of other organisms, indicating conservation of the functional role of LAPs in UVR tolerance.


Assuntos
Leucil Aminopeptidase , Raios Ultravioleta , Fotossíntese/efeitos da radiação , Reparo do DNA , Glutationa
5.
Biopolymers ; 115(2): e23559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37421636

RESUMO

Circadian clocks are intracellular systems that orchestrate metabolic processes in anticipation of sunrise and sunset by providing an internal representation of local time. Because the ~24-h metabolic rhythms they produce are important to health across diverse life forms there is growing interest in their mechanisms. However, mechanistic studies are challenging in vivo due to the complex, that is, poorly defined, milieu of live cells. Recently, we reconstituted the intact circadian clock of cyanobacteria in vitro. It oscillates autonomously and remains phase coherent for many days with a fluorescence-based readout that enables real-time observation of individual clock proteins and promoter DNA simultaneously under defined conditions without user intervention. We found that reproducibility of the reactions required strict adherence to the quality of each recombinant clock protein purified from Escherichia coli. Here, we provide protocols for preparing in vitro clock samples so that other labs can ask questions about how changing environments, like temperature, metabolites, and protein levels are reflected in the core oscillator and propagated to regulation of transcription, providing deeper mechanistic insights into clock biology.


Assuntos
Relógios Circadianos , Cianobactérias , Relógios Circadianos/genética , Reprodutibilidade dos Testes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo
6.
Annu Rev Genet ; 49: 485-505, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442846

RESUMO

Early research on the cyanobacterial clock focused on characterizing the genes needed to keep, entrain, and convey time within the cell. As the scope of assays used in molecular genetics has expanded to capture systems-level properties (e.g., RNA-seq, ChIP-seq, metabolomics, high-throughput screening of genetic variants), so has our understanding of how the clock fits within and influences a broader cellular context. Here we review the work that has established a global perspective of the clock, with a focus on (a) an emerging network-centric view of clock architecture, (b) mechanistic insights into how temporal and environmental cues are transmitted and integrated within this network,


Assuntos
Ritmo Circadiano/fisiologia , Synechococcus/fisiologia , Adaptação Biológica , Evolução Biológica , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais , Synechococcus/citologia
7.
Proc Natl Acad Sci U S A ; 115(33): E7805-E7813, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061418

RESUMO

In cyanobacteria, the KaiABC posttranslational oscillator drives circadian rhythms of gene expression and controls the timing of cell division. The Kai-based oscillator can be reconstituted in vitro, demonstrating that the clock can run without protein synthesis and degradation; however, protein degradation is known to be important for clock function in vivo. Here, we report that strains deficient in the ClpXP1P2 protease have, in addition to known long-period circadian rhythms, an exaggerated ability to synchronize with the external environment (reduced "jetlag") compared with WT strains. Deletion of the ClpX chaperone, but not the protease subunits ClpP1 or ClpP2, results in cell division defects in a manner that is dependent on the expression of a dusk-peaking factor. We propose that chaperone activities of ClpX are required to coordinate clock control of cell division whereas the protease activities of the ClpXP1P2 complex are required to maintain appropriate periodicity of the clock and its synchronization with the external environment.


Assuntos
Proteínas de Bactérias/metabolismo , Ritmo Circadiano/fisiologia , Endopeptidase Clp/metabolismo , Chaperonas Moleculares/metabolismo , Synechococcus/enzimologia , Proteínas de Bactérias/genética , Endopeptidase Clp/genética , Chaperonas Moleculares/genética , Desdobramento de Proteína , Synechococcus/genética
8.
Proc Natl Acad Sci U S A ; 115(30): E7174-E7183, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29991601

RESUMO

The recurrent pattern of light and darkness generated by Earth's axial rotation has profoundly influenced the evolution of organisms, selecting for both biological mechanisms that respond acutely to environmental changes and circadian clocks that program physiology in anticipation of daily variations. The necessity to integrate environmental responsiveness and circadian programming is exemplified in photosynthetic organisms such as cyanobacteria, which depend on light-driven photochemical processes. The cyanobacterium Synechococcus elongatus PCC 7942 is an excellent model system for dissecting these entwined mechanisms. Its core circadian oscillator, consisting of three proteins, KaiA, KaiB, and KaiC, transmits time-of-day signals to clock-output proteins, which reciprocally regulate global transcription. Research performed under constant light facilitates analysis of intrinsic cycles separately from direct environmental responses but does not provide insight into how these regulatory systems are integrated during light-dark cycles. Thus, we sought to identify genes that are specifically necessary in a day-night environment. We screened a dense bar-coded transposon library in both continuous light and daily cycling conditions and compared the fitness consequences of loss of each nonessential gene in the genome. Although the clock itself is not essential for viability in light-dark cycles, the most detrimental mutations revealed by the screen were those that disrupt KaiA. The screen broadened our understanding of light-dark survival in photosynthetic organisms, identified unforeseen clock-protein interaction dynamics, and reinforced the role of the clock as a negative regulator of a nighttime metabolic program that is essential for S. elongatus to survive in the dark.


Assuntos
Proteínas de Bactérias , Relógios Circadianos/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano , Estudo de Associação Genômica Ampla , Fotossíntese/fisiologia , Transdução de Sinais/fisiologia , Synechococcus , Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(52): E12378-E12387, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30552139

RESUMO

Many cyanobacteria, which use light as an energy source via photosynthesis, have evolved the ability to guide their movement toward or away from a light source. This process, termed "phototaxis," enables organisms to localize in optimal light environments for improved growth and fitness. Mechanisms of phototaxis have been studied in the coccoid cyanobacterium Synechocystis sp. strain PCC 6803, but the rod-shaped Synechococcus elongatus PCC 7942, studied for circadian rhythms and metabolic engineering, has no phototactic motility. In this study we report a recent environmental isolate of S. elongatus, the strain UTEX 3055, whose genome is 98.5% identical to that of PCC 7942 but which is motile and phototactic. A six-gene operon encoding chemotaxis-like proteins was confirmed to be involved in phototaxis. Environmental light signals are perceived by a cyanobacteriochrome, PixJSe (Synpcc7942_0858), which carries five GAF domains that are responsive to blue/green light and resemble those of PixJ from Synechocystis Plate-based phototaxis assays indicate that UTEX 3055 uses PixJSe to sense blue and green light. Mutation of conserved functional cysteine residues in different GAF domains indicates that PixJSe controls both positive and negative phototaxis, in contrast to the multiple proteins that are employed for implementing bidirectional phototaxis in Synechocystis.


Assuntos
Fotorreceptores Microbianos/metabolismo , Fototaxia/fisiologia , Synechococcus/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Cianobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Fotorreceptores Microbianos/química , Synechococcus/fisiologia , Synechocystis/metabolismo
10.
PLoS Genet ; 14(4): e1007301, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29608558

RESUMO

The broadly conserved signaling nucleotide cyclic di-adenosine monophosphate (c-di-AMP) is essential for viability in most bacteria where it has been studied. However, characterization of the cellular functions and metabolism of c-di-AMP has largely been confined to the class Bacilli, limiting our functional understanding of the molecule among diverse phyla. We identified the cyclase responsible for c-di-AMP synthesis and characterized the molecule's role in survival of darkness in the model photosynthetic cyanobacterium Synechococcus elongatus PCC 7942. In addition to the use of traditional genetic, biochemical, and proteomic approaches, we developed a high-throughput genetic interaction screen (IRB-Seq) to determine pathways where the signaling nucleotide is active. We found that in S. elongatus c-di-AMP is produced by an enzyme of the diadenylate cyclase family, CdaA, which was previously unexplored experimentally. A cdaA-null mutant experiences increased oxidative stress and death during the nighttime portion of day-night cycles, in which potassium transport is implicated. These findings suggest that c-di-AMP is biologically active in cyanobacteria and has non-canonical roles in the phylum including oxidative stress management and day-night survival. The pipeline and analysis tools for IRB-Seq developed for this study constitute a quantitative high-throughput approach for studying genetic interactions.


Assuntos
AMP Cíclico/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Synechococcus/fisiologia , Proteínas de Bactérias/metabolismo , Mutação , Estresse Oxidativo , Fósforo-Oxigênio Liases/metabolismo , Proteômica , Transdução de Sinais , Synechococcus/genética , Synechococcus/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(4): E580-E589, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28074036

RESUMO

Cyanobacteria evolved a robust circadian clock, which has a profound influence on fitness and metabolism under daily light-dark (LD) cycles. In the model cyanobacterium Synechococcus elongatus PCC 7942, a functional clock is not required for diurnal growth, but mutants defective for the response regulator that mediates transcriptional rhythms in the wild-type, regulator of phycobilisome association A (RpaA), cannot be cultured under LD conditions. We found that rpaA-null mutants are inviable after several hours in the dark and compared the metabolomes of wild-type and rpaA-null strains to identify the source of lethality. Here, we show that the wild-type metabolome is very stable throughout the night, and this stability is lost in the absence of RpaA. Additionally, an rpaA mutant accumulates excessive reactive oxygen species (ROS) during the day and is unable to clear it during the night. The rpaA-null metabolome indicates that these cells are reductant-starved in the dark, likely because enzymes of the primary nighttime NADPH-producing pathway are direct targets of RpaA. Because NADPH is required for processes that detoxify ROS, conditional LD lethality likely results from inability of the mutant to activate reductant-requiring pathways that detoxify ROS when photosynthesis is not active. We identified second-site mutations and growth conditions that suppress LD lethality in the mutant background that support these conclusions. These results provide a mechanistic explanation as to why rpaA-null mutants die in the dark, further connect the clock to metabolism under diurnal growth, and indicate that RpaA likely has important unidentified functions during the day.


Assuntos
Proteínas de Bactérias/metabolismo , Relógios Circadianos/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Proteínas de Bactérias/genética , Ácidos Graxos não Esterificados/metabolismo , Luz , Metaboloma , Mutação , Oxirredução , Ficobilissomas/metabolismo , Poliaminas/metabolismo
12.
J Biol Chem ; 293(14): 5026-5034, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29440392

RESUMO

Circadian rhythms enable cells and organisms to coordinate their physiology with the cyclic environmental changes that come as a result of Earth's light/dark cycles. Cyanobacteria make use of a post-translational oscillator to maintain circadian rhythms, and this elegant system has become an important model for circadian timekeeping mechanisms. Composed of three proteins, the KaiABC system undergoes an oscillatory biochemical cycle that provides timing cues to achieve a 24-h molecular clock. Together with the input/output proteins SasA, CikA, and RpaA, these six gene products account for the timekeeping, entrainment, and output signaling functions in cyanobacterial circadian rhythms. This Minireview summarizes the current structural, functional and mechanistic insights into the cyanobacterial circadian clock.


Assuntos
Proteínas de Bactérias/metabolismo , Relógios Circadianos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Cianobactérias/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/química , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Cianobactérias/química , Cianobactérias/genética , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Fotoperíodo , Conformação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Transdução de Sinais
13.
Metab Eng ; 52: 42-56, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30439494

RESUMO

There is great interest in engineering photoautotrophic metabolism to generate bioproducts of societal importance. Despite the success in employing genome-scale modeling coupled with flux balance analysis to engineer heterotrophic metabolism, the lack of proper constraints necessary to generate biologically realistic predictions has hindered broad application of this methodology to phototrophic metabolism. Here we describe a methodology for constraining genome-scale models of photoautotrophy in the cyanobacteria Synechococcus elongatus PCC 7942. Experimental photophysiology parameters coupled to genome-scale flux balance analysis resulted in accurate predictions of growth rates and metabolic reaction fluxes at low and high light conditions. Additionally, by constraining photon uptake fluxes, we characterized the metabolic cost of excess excitation energy. The predicted energy fluxes were consistent with known light-adapted phenotypes in cyanobacteria. Finally, we leveraged the modeling framework to characterize existing photoautotrophic and photomixtotrophic engineering strategies for 2,3-butanediol production in S. elongatus. This methodology, applicable to genome-scale modeling of all phototrophic microorganisms, can facilitate the use of flux balance analysis in the engineering of light-driven metabolism.


Assuntos
Luz , Synechococcus/metabolismo , Synechococcus/efeitos da radiação , Aclimatação , Butileno Glicóis/metabolismo , Clorofila/metabolismo , Simulação por Computador , Metabolismo Energético , Genoma , Engenharia Metabólica/métodos , Análise do Fluxo Metabólico , Oxigênio/metabolismo , Fotossíntese/genética , Pigmentação , Synechococcus/genética
14.
Proc Natl Acad Sci U S A ; 113(51): E8344-E8353, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27911809

RESUMO

The model cyanobacterium, Synechococcus elongatus PCC 7942, is a genetically tractable obligate phototroph that is being developed for the bioproduction of high-value chemicals. Genome-scale models (GEMs) have been successfully used to assess and engineer cellular metabolism; however, GEMs of phototrophic metabolism have been limited by the lack of experimental datasets for model validation and the challenges of incorporating photon uptake. Here, we develop a GEM of metabolism in S. elongatus using random barcode transposon site sequencing (RB-TnSeq) essential gene and physiological data specific to photoautotrophic metabolism. The model explicitly describes photon absorption and accounts for shading, resulting in the characteristic linear growth curve of photoautotrophs. GEM predictions of gene essentiality were compared with data obtained from recent dense-transposon mutagenesis experiments. This dataset allowed major improvements to the accuracy of the model. Furthermore, discrepancies between GEM predictions and the in vivo dataset revealed biological characteristics, such as the importance of a truncated, linear TCA pathway, low flux toward amino acid synthesis from photorespiration, and knowledge gaps within nucleotide metabolism. Coupling of strong experimental support and photoautotrophic modeling methods thus resulted in a highly accurate model of S. elongatus metabolism that highlights previously unknown areas of S. elongatus biology.


Assuntos
Cianobactérias/genética , Regulação da Expressão Gênica , Genes Essenciais , Synechococcus/genética , Carbono/metabolismo , Clorofila/química , Ciclo do Ácido Cítrico , Cianobactérias/metabolismo , Genoma , Mutagênese , Nucleotídeos/metabolismo , Fases de Leitura Aberta , Fótons , Fotossíntese , Synechococcus/metabolismo
15.
N Z J Bot ; 57(2): 70-75, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551610

RESUMO

This perspective provides a historical account of the isolation and nomenclature of the cyanobacterial strains currently known as Synechococcus elongatus. The story focuses on an isolate from the San Francisco Bay area of California (Pasteur Culture Collection PCC 7942) that has, for decades, been the genetic model for this species, and its close relative isolated from Waller Creek in Texas (PCC 6301, also known as the University of Texas at Austin Culture Collection of Algae UTEX 625). Until recently, these strains have been the only representatives of the species. A new wild isolate, UTEX 3055, is distinctly different from the prior reference strains. S. elongatus strains have been widely used by labs around the world to discover fundamental cellular processes and to engineer cyanobacteria to generate useful products. The review clarifies relationships among strains that carry different names, and explains how names that appear in the literature have changed over the years.

16.
Proc Natl Acad Sci U S A ; 112(15): E1916-25, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825710

RESUMO

Synechococcus elongatus PCC 7942 is a genetically tractable model cyanobacterium that has been engineered to produce industrially relevant biomolecules and is the best-studied model for a prokaryotic circadian clock. However, the organism is commonly grown in continuous light in the laboratory, and data on metabolic processes under diurnal conditions are lacking. Moreover, the influence of the circadian clock on diurnal metabolism has been investigated only briefly. Here, we demonstrate that the circadian oscillator influences rhythms of metabolism during diurnal growth, even though light-dark cycles can drive metabolic rhythms independently. Moreover, the phenotype associated with loss of the core oscillator protein, KaiC, is distinct from that caused by absence of the circadian output transcriptional regulator, RpaA (regulator of phycobilisome-associated A). Although RpaA activity is important for carbon degradation at night, KaiC is dispensable for those processes. Untargeted metabolomics analysis and glycogen kinetics suggest that functional KaiC is important for metabolite partitioning in the morning. Additionally, output from the oscillator functions to inhibit RpaA activity in the morning, and kaiC-null strains expressing a mutant KaiC phosphomimetic, KaiC-pST, in which the oscillator is locked in the most active output state, phenocopies a ΔrpaA strain. Inhibition of RpaA by the oscillator in the morning suppresses metabolic processes that normally are active at night, and kaiC-null strains show indications of oxidative pentose phosphate pathway activation as well as increased abundance of primary metabolites. Inhibitory clock output may serve to allow secondary metabolite biosynthesis in the morning, and some metabolites resulting from these processes may feed back to reinforce clock timing.


Assuntos
Proteínas de Bactérias/metabolismo , Relógios Biológicos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano , Synechococcus/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/efeitos da radiação , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Escuridão , Glicogênio/metabolismo , Cinética , Luz , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/efeitos da radiação , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/efeitos da radiação , Metaboloma/genética , Metaboloma/efeitos da radiação , Metabolômica/métodos , Modelos Biológicos , Mutação , Nucleotídeos/metabolismo , Synechococcus/genética , Fatores de Tempo
17.
Proc Natl Acad Sci U S A ; 112(7): 2198-203, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25653337

RESUMO

The response regulator RpaB (regulator of phycobilisome associated B), part of an essential two-component system conserved in cyanobacteria that responds to multiple environmental signals, has recently been implicated in the control of cell dimensions and of circadian rhythms of gene expression in the model cyanobacterium Synechococcus elongatus PCC 7942. However, little is known of the molecular mechanisms that underlie RpaB functions. In this study we show that the regulation of phenotypes by RpaB is intimately connected with the activity of RpaA (regulator of phycobilisome associated A), the master regulator of circadian transcription patterns. RpaB affects RpaA activity both through control of gene expression, a function requiring an intact effector domain, and via altering RpaA phosphorylation, a function mediated through the N-terminal receiver domain of RpaB. Thus, both phosphorylation cross-talk and coregulation of target genes play a role in the genetic interactions between the RpaA and RpaB pathways. In addition, RpaB∼P levels appear critical for survival under light:dark cycles, conditions in which RpaB phosphorylation is environmentally driven independent of the circadian clock. We propose that the complex regulatory interactions between the essential and environmentally sensitive NblS-RpaB system and the SasA-RpaA clock output system integrate relevant extra- and intracellular signals to the circadian clock.


Assuntos
Proteínas de Bactérias/fisiologia , Ritmo Circadiano , Cianobactérias/fisiologia , Cianobactérias/genética , Genes Bacterianos , Fosforilação
18.
Proc Natl Acad Sci U S A ; 112(48): E6634-43, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26508635

RESUMO

Synechococcus elongatus PCC 7942 is a model organism used for studying photosynthesis and the circadian clock, and it is being developed for the production of fuel, industrial chemicals, and pharmaceuticals. To identify a comprehensive set of genes and intergenic regions that impacts fitness in S. elongatus, we created a pooled library of ∼ 250,000 transposon mutants and used sequencing to identify the insertion locations. By analyzing the distribution and survival of these mutants, we identified 718 of the organism's 2,723 genes as essential for survival under laboratory conditions. The validity of the essential gene set is supported by its tight overlap with well-conserved genes and its enrichment for core biological processes. The differences noted between our dataset and these predictors of essentiality, however, have led to surprising biological insights. One such finding is that genes in a large portion of the TCA cycle are dispensable, suggesting that S. elongatus does not require a cyclic TCA process. Furthermore, the density of the transposon mutant library enabled individual and global statements about the essentiality of noncoding RNAs, regulatory elements, and other intergenic regions. In this way, a group I intron located in tRNA(Leu), which has been used extensively for phylogenetic studies, was shown here to be essential for the survival of S. elongatus. Our survey of essentiality for every locus in the S. elongatus genome serves as a powerful resource for understanding the organism's physiology and defines the essential gene set required for the growth of a photosynthetic organism.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Essenciais , Fotossíntese/genética , Synechococcus/genética , Proteínas de Bactérias/genética , Sequência de Bases , Carbono/química , Elementos de DNA Transponíveis , DNA Complementar/genética , Biblioteca Gênica , Genoma Bacteriano , Genótipo , Íntrons , Dados de Sequência Molecular , Mutação , Filogenia , RNA de Transferência de Leucina/metabolismo , RNA não Traduzido/metabolismo
19.
Environ Microbiol ; 19(7): 2862-2872, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28585390

RESUMO

The hair-like cell appendages denoted as type IV pili are crucial for biofilm formation in diverse eubacteria. The protein complex responsible for type IV pilus assembly is homologous with the type II protein secretion complex. In the cyanobacterium Synechococcus elongatus PCC 7942, the gene Synpcc7942_2071 encodes an ATPase homologue of type II/type IV systems. Here, we report that inactivation of Synpcc7942_2071 strongly affected the suite of proteins present in the extracellular milieu (exo-proteome) and eliminated pili observable by electron microscopy. These results support a role for this gene product in protein secretion as well as in pili formation. As we previously reported, inactivation of Synpcc7942_2071 enables biofilm formation and suppresses the planktonic growth of S. elongatus. Thus, pili are dispensable for biofilm development in this cyanobacterium, in contrast to their biofilm-promoting function in type IV pili-producing heterotrophic bacteria. Nevertheless, pili removal is not required for biofilm formation as evident by a piliated mutant of S. elongatus that develops biofilms. We show that adhesion and timing of biofilm development differ between the piliated and non-piliated strains. The study demonstrates key differences in the process of biofilm formation between cyanobacteria and well-studied type IV pili-producing heterotrophic bacteria.


Assuntos
Biofilmes/crescimento & desenvolvimento , Fímbrias Bacterianas/genética , Synechococcus/genética , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Fímbrias Bacterianas/classificação , Fímbrias Bacterianas/metabolismo , Microscopia Eletrônica , Synechococcus/crescimento & desenvolvimento
20.
Proc Natl Acad Sci U S A ; 111(47): E5069-75, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385627

RESUMO

The circadian input kinase of the cyanobacterium Synechococcus elongatus PCC 7942 (CikA) is important both for synchronizing circadian rhythms with external environmental cycles and for transferring temporal information between the oscillator and the global transcriptional regulator RpaA (regulator of phycobilisome-associated A). KOs of cikA result in one of the most severely altered but still rhythmic circadian phenotypes observed. We chemically mutagenized a cikA-null S. elongatus strain and screened for second-site suppressor mutations that could restore normal circadian rhythms. We identified two independent mutations in the Synechococcus adaptive sensor A (sasA) gene that produce nearly WT rhythms of gene expression, likely because they compensate for the loss of CikA on the temporal phosphorylation of RpaA. Additionally, these mutations restore the ability to reset the clock after a short dark pulse through an output-independent pathway, suggesting that SasA can influence entrainment through direct interactions with KaiC, a property previously unattributed to it. These experiments question the evolutionary advantage of integrating CikA into the cyanobacterial clock, challenge the conventional construct of separable input and output pathways, and show how easily the cell can adapt to restore phenotype in a severely compromised genetic network.


Assuntos
Proteínas de Bactérias/genética , Ritmo Circadiano , Redes Reguladoras de Genes , Genes Bacterianos , Mutação Puntual , Proteínas Quinases/genética , Synechococcus/genética , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA