Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 101(4): 313-325, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36947832

RESUMO

Excessive fructose consumption is associated with the incidence of obesity and systemic inflammation, resulting in increased oxidative damage and failure to the function of brain structures. Thus, we hypothesized that fructose consumption will significantly increase inflammation, oxidative damage, and mitochondrial dysfunction in the mouse brain and, consequently, memory damage. The effects of different fructose concentrations on inflammatory and biochemical parameters in the mouse brain were evaluated. Male Swiss mice were randomized into four groups: control, with exclusive water intake, 5%, 10%, and 20% fructose group. The 10% and 20% fructose groups showed an increase in epididymal fat, in addition to higher food consumption. Inflammatory markers were increased in epididymal fat and in some brain structures. In the evaluation of oxidative damage, it was possible to observe significant increases in the hypothalamus, prefrontal cortex, and hippocampus. In the epididymal fat and in the prefrontal cortex, there was a decrease in the activity of the mitochondrial respiratory chain complexes and an increase in the striatum. Furthermore, short memory was impaired in the 10% and 20% groups but not long memory. In conclusion, excess fructose consumption can cause fat accumulation, inflammation, oxidative damage, and mitochondrial dysfunction, which can damage brain structures and consequently memory.


Assuntos
Frutose , Obesidade , Camundongos , Masculino , Animais , Frutose/efeitos adversos , Estresse Oxidativo , Inflamação , Encéfalo
2.
Neuroimmunomodulation ; 29(4): 269-281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36323239

RESUMO

Many coronavirus disease 2019 (COVID-19)-recovered patients report signs and symptoms and are experiencing neurological, psychiatric, and cognitive problems. However, the exact prevalence and outcome of cognitive sequelae is unclear. Even though the severe acute respiratory syndrome coronavirus 2 has target brain cells through binding to angiotensin-converting enzyme 2 (ACE2) receptor in acute infection, several studies indicate the absence of the virus in the brain of many COVID-19 patients who developed neurological disorders. Thus, the COVID-19 mechanisms for stimulating cognitive dysfunction may include neuroinflammation, which is mediated by a sustained systemic inflammation, a disrupted brain barrier, and severe glial reactiveness, especially within the limbic system. This review explores the interplay of infected lungs and brain in COVID-19 and its impact on the cognitive function.


Assuntos
COVID-19 , Humanos , COVID-19/complicações , Peptidil Dipeptidase A/metabolismo , Pulmão/metabolismo , Encéfalo/metabolismo , Cognição
3.
Int J Neurosci ; : 1-9, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36448768

RESUMO

Propose/aim of study: Modafinil (MD) is a psychostimulant drug used off-label and cognitive dysfunction may be a significant emerging treatment target for this drug. The objective of this study was to evaluate the effect of MD on the neurochemical parameters and memory impairment of rats submitted to sepsis by cecal ligation and perforation (CLP).Material and method: Male Wistar rats (250-350g) were submitted to CLP, or sham as control, and divided into the sham + water, sham + MD (300 mg/kg), CLP + water, and CLP + MD (300 mg/kg) groups. Ten days after the administration of MD and CLP, the rats were submitted to a memory test by passive avoidance apparatus being sacrificed. The nitrite and nitrate (N/N) concentration, myeloperoxidase (MPO) and catalase (CAT) activity, lipid and protein oxidative damage, and brain-derived neurotrophic factor (BDNF) levels were measured in the prefrontal cortex and hippocampus.Results: The passive avoidance test verified an increase in the latency time compared training and test section in the groups sham + water and CLP + MD. Decreased N/N concentration and MPO activity were verified in the prefrontal cortex of rats submitted to CLP and MD treatment, as well as reduced protein and lipid oxidative damage in the hippocampus, which was accompanied by increased CAT activity and BDNF levels.Conclusion: Our data indicate the role of MD in attenuating oxidative stress parameters, the alteration of BDNF, and an improvement in memory impairment in rats ten days after induction of sepsis.

4.
Microvasc Res ; 137: 104193, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34062190

RESUMO

Sepsis is a complication of an infection which imbalance the normal regulation of several organ systems, including the central nervous system (CNS). Evidence points towards inflammation and oxidative stress as major steps associated with brain dysfunction in sepsis. Thus, we investigated the folic acid (FA) effect as an important antioxidant compound on acute brain dysfunction in rats and long term cognitive impairment and survival. Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) or sham (control) and treated orally with FA (10 mg/kg after CLP) or vehicle (veh). Animals were divided into sham + veh, sham + FA, CLP + veh and CLP + FA groups. Twenty-four hours after surgery, the hippocampus and prefrontal cortex were obtained and assayed for levels of blood brain barrier (BBB) permeability, nitrite/nitrate concentration, myeloperoxidase (MPO) activity, thiobarbituric acid reactive species (TBARS) formation and protein carbonyls. Survival was performed during 10 days after surgery and memory was evaluated. FA reduced BBB permeability, MPO activity in hippocampus and pre frontal cortex in 24 h and lipid peroxidation in hippocampus and improves the survival rate after sepsis. Long term cognitive improvement was verified with FA in septic rats compared with CLP + veh. Our data demonstrates that FA reduces the memory impairment in 10 days after sepsis and mortality in part by decreasing BBB permeability and oxidative stress parameters in the brain.


Assuntos
Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Ácido Fólico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sepse/tratamento farmacológico , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Modelos Animais de Doenças , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Ratos Wistar , Sepse/metabolismo , Sepse/fisiopatologia , Sepse/psicologia
5.
Neurochem Res ; 45(10): 2487-2498, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32789797

RESUMO

Obesity is characterized by chronic inflammation of low grade. The cholinergic anti-inflammatory pathway favors the reduction of the inflammatory response. In this work the effect of stimulation of the cholinergic anti-inflammatory pathway on SHIRPA behavioral test and mitochondrial respiratory chain activity in obese mice was evaluated. The animals were paired in four groups: saline + control diet; donepezil + control diet; saline + high-fat diet and donepezil + high-fat diet. 5 mg/kg/day orally of donepezil or saline were given 7 days before the beginning of the diet until completing 11 weeks of the experiment. Food intake and body weight were measured. At the end of the experiment the animals were submitted to the SHIRPA behavioral test, soon after they were killed by decapitation, the open abdominal cavity and the mesenteric fat were removed. The hypothalamus, hippocampus, prefrontal cortex, and striatum were removed for evaluation of the mitochondrial respiratory chain. It can be observed that donepezil prevented weight gain and food consumption, as well as a tendency to prevent the accumulation of mesenteric fat in obese animals. There was no behavioral change in obese animals, nor did the influence of donepezil on these parameters. On the other hand, donepezil did not prevent inhibition of complex I activity, prevented the inhibition of complex II, and showed a tendency to prevent IV complex activity inhibited in obesity. With these results it can be concluded that the activation of the cholinergic anti-inflammatory pathway is promising for the alterations found in obesity.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Encéfalo/metabolismo , Donepezila/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , Obesidade/prevenção & controle , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Masculino , Camundongos , Obesidade/metabolismo
6.
Biochem Cell Biol ; 97(6): 693-701, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31774300

RESUMO

This study evaluated the effects of omega-3 polyunsaturated fatty acids (PUFAs) on oxidative stress and energy metabolism parameters in the visceral fat of a high-fat-diet induced obesity model. Energy intake, body mass, and visceral fat mass were also evaluated. Male Swiss mice received either a control diet (control group) or a high-fat diet (obese group) for 6 weeks. After this period, the groups were divided into control + saline, control + omega-3, obese + saline, and obese + omega-3, and to these groups 400 mg·(kg body mass)-1·day-1 of fish oil (or saline) was administered orally, for 4 weeks. Energy intake and body mass were monitored throughout the experiment. In the 10th week, the animals were euthanized and the visceral fat (mesenteric) was removed. Treatment with omega-3 PUFAs did not affect energy intake or body mass, but it did reduced visceral fat mass. In visceral fat, omega-3 PUFAs reduced oxidative damage and alleviated changes to the antioxidant defense system and the Krebs cycle. The mitochondrial respiratory chain was neither altered by obesity nor by omega-3 PUFAs. In conclusion, omega-3 PUFAs have beneficial effects on the visceral fat of obese mice because they mitigate changes caused by the consumption of a high-fat diet.


Assuntos
Modelos Animais de Doenças , Ácidos Graxos Ômega-3/farmacologia , Gordura Intra-Abdominal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Animais , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Obesidade/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos
7.
Microvasc Res ; 123: 19-24, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30552905

RESUMO

BACKGROUND: The choroid plexus (CP), main component of blood-cerebrospinal fluid barrier (BCSFB), protects the brain from peripheral inflammation similar to the blood-brain barrier. Thus, CP is considered a critical target site of oxidative damage, which in sepsis oxidative stress is likely to be a major step in the development of brain damage. Functional alterations in CP may be associated with sepsis-induced brain injury. However, there is no description on the mechanisms associated with BCSFB disruption during sepsis development. MATERIALS AND METHODS: To test this hypothesis, we examined time-dependent oxidative stress markers in CP and permeability of BCSFB in rats submitted to polymicrobial sepsis by cecal ligation and puncture (CLP) or sham surgery (control). We assessed albumin cerebrospinal fluid/plasma concentration quotient (Qalb), an index of BCSFB dysfunction and in CP samples, the oxidative damage in lipids, proteins, antioxidant enzymes and nitrite/nitrate (N/N) concentration in 12, 24 and 48 h after CLP. RESULTS: The increase of BCSFB permeability is time-related to the increase of N/N concentration, oxidative damage to lipid and proteins, and decrease of antioxidant enzyme superoxide dismutase activity at 12 h in the CP; and decrease of catalase activity in 12 and 24 h. CONCLUSIONS: In experimental sepsis the BCSFB dysfunction occurs and oxidative stress seems to be a major step in this dysfunction.


Assuntos
Plexo Corióideo/irrigação sanguínea , Estresse Oxidativo , Sepse/sangue , Sepse/líquido cefalorraquidiano , Animais , Antioxidantes/metabolismo , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Permeabilidade Capilar , Ceco/microbiologia , Ceco/cirurgia , Modelos Animais de Doenças , Ligadura , Peroxidação de Lipídeos , Masculino , Carbonilação Proteica , Punções , Ratos Wistar , Sepse/microbiologia , Albumina Sérica/líquido cefalorraquidiano , Fatores de Tempo
8.
Metab Brain Dis ; 34(2): 565-573, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30635861

RESUMO

The aim of this study was to assess inflammatory parameters, oxidative stress and energy metabolism in the hypothalamus of diet-induced obese mice. Male Swiss mice were divided into two study groups: control group and obese group. The animals in the control group were fed a diet with adequate amounts of macronutrients (normal-lipid diet), whereas the animals in the obese group were fed a high-fat diet to induce obesity. Obesity induction lasted 10 weeks, at the end of this period the disease model was validated in animals. The animals in the obese group had higher calorie consumption, higher body weight and higher weight of mesenteric fat compared to control group. Obesity showed an increase in levels of interleukin 1ß and decreased levels of interleukin 10 in the hypothalamus. Furthermore, increased lipid peroxidation and protein carbonylation, and decreased level of glutathione in the hypothalamus of obese animals. However, there was no statistically significant difference in the activity of antioxidant enzymes, superoxide dismutase and catalase. The obese group had lower activity of complex I, II and IV of the mitochondrial respiratory chain, as well as lower activity of creatine kinase in the hypothalamus as compared to the control group. Thus, the results from this study showed changes in inflammatory markers, and dysregulation of metabolic enzymes in the pathophysiology of obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Obesidade/metabolismo , Animais , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Ingestão de Energia/efeitos dos fármacos , Inflamação/metabolismo , Masculino , Camundongos , Neuroquímica/métodos , Estresse Oxidativo/efeitos dos fármacos
9.
Int J Colorectal Dis ; 31(11): 1759-1766, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27614446

RESUMO

PURPOSES: The objective of this study was to evaluate the effect of supplementation with vitamin C on intestinal anastomosis healing in malnourished rats. METHODS: Male Wistar rats were divided into three groups: (1) sham, well-nourished rats that received vehicle; (2) FR+Veh, rats that were subjected to food restriction and received vehicle; and (3) FR+VC, rats that were subjected to food restriction and received vitamin C. Four days before surgery, the animals received vitamin C (100 mg/kg/day) via gavage and underwent colon resection with anastomosis in a single plane. The survival rate of rats was monitored until day 7 after surgery. Regarding anastomosis tissues, we examined intra-abdominal adhesion index, hydroxyproline content, collagen density, inflammatory parameters, and oxidative damage to proteins and lipids. RESULTS: Malnutrition decreases body weight and increases mortality; the survival rate was 90 % in group 1, 60 % in group 2, and 80 % in group 3. Vitamin C was able to increase hydroxyproline concentration and density of collagen and decrease the intra-abdominal adhesion index, as well as the infiltration of neutrophils and oxidative damage to proteins in malnourished rats compared to group treated with vehicle. CONCLUSIONS: Preoperative vitamin C supplementation can improve the intestinal anastomosis healing, biochemical alterations, and prolong survival in rats subjected to food restriction.


Assuntos
Ácido Ascórbico/uso terapêutico , Colo/cirurgia , Suplementos Nutricionais , Desnutrição/tratamento farmacológico , Cuidados Pré-Operatórios , Reto/cirurgia , Cicatrização/efeitos dos fármacos , Anastomose Cirúrgica , Animais , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/farmacologia , Peso Corporal/efeitos dos fármacos , Colágeno/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Hidroxiprolina/metabolismo , Masculino , Desnutrição/complicações , Nitratos/metabolismo , Nitritos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Ratos Wistar , Reto/efeitos dos fármacos , Reto/patologia , Aderências Teciduais/complicações , Aderências Teciduais/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo
10.
Exp Gerontol ; 160: 111705, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35063617

RESUMO

Aging is a dynamic process, in which morphological and physiological changes occur at all levels, making the body more vulnerable to acute events. Elderly people are at greater risk of sepsis developing than younger people. Sepsis is a set of serious manifestations throughout the body produced by an infection, leading to events that compromise cell homeostasis as oxidative stress and is associated with organ dysfunction. The aim of this study was to evaluate multi-organ oxidative stress in old rats in an animal model of polymicrobial sepsis. Adult (60d) and old (210d) male Wistar rats were submitted to sepsis by cecal ligation and perforation (CLP) and control group (sham) only by laparotomy. The experimental groups were divided into sham 60d, sham 210d, CLP 60d and CLP 210d. Twenty-four hours after CLP, myeloperoxidase (MPO) activity, oxidative damage to lipids and proteins, superoxide dismutase (SOD) and catalase (CAT) activities were evaluated in the lung, kidney, liver, heart, spleen, quadriceps and diaphragm. Aging potentiated the increase in MPO activity in the after sepsis in the lung, liver and spleen. Lipid oxidative damage occurred in all structures analyzed in the CLP groups, while only in the lung, liver and diaphragm the lipid peroxidation was higher in the CLP 210d group compared to 60d. Regarding protein damage, this potentiation happened only in the lung. The SOD activity in the lung, kidney, spleen and diaphragm there was a significant decrease in the CLP 210d group compared to the sham 60d group while in the CAT only in the lung and kidney. The findings in this study indicate that increasing age potentiated oxidative damage in different organs after sepsis by intensifying the presence of neutrophils, which possibly increased the damage to lipids and proteins with reduced activity of SOD and CAT.


Assuntos
Estresse Oxidativo , Sepse , Animais , Modelos Animais de Doenças , Peroxidação de Lipídeos , Masculino , Ratos , Ratos Wistar , Sepse/complicações , Superóxido Dismutase/metabolismo
11.
Mol Neurobiol ; 59(6): 3860-3872, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35426063

RESUMO

Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection. The crosstalk occurs between the primary focus of infection and lung and other organ systems including the central nervous system via soluble and cellular inflammatory mediators and that this involves both the innate and adaptive immune systems. These interactions are reflected by genomic changes and abnormal rates of cellular apoptosis. The lungs and the brain are rapidly affected due to an inflammatory response and oxidative stress in sepsis. Physical exercise promotes positive responses in the inflammatory cascade and oxidative/antioxidant system. In this sense, we aimed at determining the possible protectant effects of a physical exercise program against inflammation and oxidative stress on the lungs and the brain of rats subjected to sepsis. Adult male Wistar rats were randomly assigned to the sham + sedentary (S), sham + trained (T), and cecal ligation and perforation (CLP) + S and CLP + T and subjected to a physical exercise program using a treadmill for 21 days. Forty-eight hours after the last training session, sepsis was induced by the CLP model. Twenty-four hours later, the animals were euthanized and the lungs, the hippocampus, and the prefrontal cortex were harvested to determine the levels of cytokines by enzyme-linked immunosorbent assay (ELISA) and nitrite and reactive oxygen species production, oxidative damage to proteins, and antioxidant enzymes by spectrophotometric method. Sepsis increased the lung and brain levels of TNF-α, IL-1ß, and IL-6, while diminished IL-10 levels, elevated nitrite levels and reactive oxygen species production, augmented the levels of protein carbonyls and diminished the sulfhydryl content, and decreased SOD activity and GSH levels. The exercise program diminished the levels of TNF-α, IL-1ß, IL-6, nitrite, and reactive oxygen species production, as well as the levels of protein carbonyls but augmented the sulfhydryl content, and elevated SOD activity. In conclusion, the exercise program protected the lungs and the brain of septic rats against inflammation and oxidative stress.


Assuntos
Antioxidantes , Estresse Oxidativo , Condicionamento Físico Animal , Sepse , Animais , Antioxidantes/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação/prevenção & controle , Interleucina-6/metabolismo , Pulmão/metabolismo , Masculino , Nitritos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Sepse/complicações , Sepse/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Pharmacol Rep ; 73(2): 525-535, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33393059

RESUMO

BACKGROUND: Electroconvulsive therapy (ECT) is often recommended for major depressive disorder (MDD) for those who do not respond to the first and second antidepressant trials. A combination of two therapies could improve antidepressant efficacy. Thus, this study aimed to investigate the synergistic effects of ECT combined to antidepressants with a different mechanism of action. METHODS: Rats were treated once a day, for five days with ketamine (5 mg/kg), fluoxetine (1 mg/kg), and bupropion (4 mg/kg) alone or in combination with ECT (1 mA; 100 V). After, oxidative damage and antioxidant capacity were assessed in the prefrontal cortex (PFC) and hippocampus, and pro-inflammatory cytokines levels were evaluated in the serum. RESULTS: ECT alone increased lipid peroxidation in the PFC and hippocampus. In the PFC of rats treated with ECT in combination with fluoxetine and bupropion, and in the hippocampus of rats treated with ECT combined with ketamine and bupropion there was a reduction in the lipid peroxidation. The nitrite/nitrate was increased by ECT alone but reverted by combination with ketamine in the hippocampus. Superoxide dismutase (SOD) was increased by ECT and maintained by fluoxetine and bupropion in the PFC. ECT alone increased interleukin-1ß (IL-1ß) and the administration of ketamine was able to revert this increase showing a neuroprotective effect of this drug when in combination with ECT. CONCLUSION: The treatment with ECT leads to an increase in oxidative damage and alters the immunological system. The combination with ketamine was able to protect against oxidative damage and the immunological response induced by ECT.


Assuntos
Antidepressivos/farmacologia , Eletroconvulsoterapia/efeitos adversos , Ketamina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antidepressivos/administração & dosagem , Bupropiona/administração & dosagem , Bupropiona/farmacologia , Terapia Combinada , Transtorno Depressivo Maior/terapia , Eletroconvulsoterapia/métodos , Fluoxetina/administração & dosagem , Fluoxetina/farmacologia , Ketamina/administração & dosagem , Masculino , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Wistar
13.
Neurotox Res ; 39(2): 119-132, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33025358

RESUMO

Sepsis-associated encephalopathy is a serious consequence of sepsis, triggered by the host response against an infectious agent, that can lead to brain damage and cognitive impairment. Several mechanisms have been proposed in this bidirectional communication between the immune system and the brain after sepsis as neuroinflammation, oxidative stress, and mitochondrial dysfunction. Stanniocalcin-1 (STC-1), an endogen neuroprotective protein, acts as an anti-inflammatory and suppresses superoxide generation through induction of uncoupling proteins (UCPs) in the mitochondria. Here, we demonstrated a protective role of STC-1 on inflammatory responses in vitro, in activated microglia stimulated with LPS, and on neuroinflammation, oxidative stress, and mitochondrial function in the hippocampus of rats subjected to an animal model of sepsis by cecal ligation and puncture (CLP), as well the consequences on long-term memory. Recombinant human STC-1 (rhSTC1) suppressed the pro-inflammatory cytokine production in LPS-stimulated microglia without changing the UCP-2 expression. Besides, rhSTC1 injected into the cisterna magna decreased acute hippocampal inflammation and oxidative stress and increased the activity of complex I and II activity of mitochondrial respiratory chain and creatine kinase at 24 h after sepsis. rhSTC1 was effective in preventing long-term cognitive impairment after CLP. In conclusion, rhSTC1 confers significant neuroprotection by inhibiting the inflammatory response in microglia and protecting against sepsis-associated encephalopathy in rats.


Assuntos
Encefalite/prevenção & controle , Glicoproteínas/administração & dosagem , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Encefalopatia Associada a Sepse/prevenção & controle , Animais , Células Cultivadas , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar
14.
Exp Gerontol ; 140: 111063, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32827711

RESUMO

Sepsis is a set of serious manifestations throughout the body produced by an infection, leading to changes that compromise cellular homeostasis and can result in dysfunction of the central nervous system. The elderly have a higher risk of developing sepsis than younger peoples. Under the influence of inflammatory mediators and oxidizing agents released in the periphery as a result of the infectious stimulus, changes occur in the blood-brain barrier (BBB) permeability, with neutrophil infiltration, the passage of toxic compounds, activation of microglia and production of reactive species that results in potentiation of neuroimmune response, with the progression of neuronal damage and neuroinflammation. The objective of this study is to compare BBB permeability and the development of oxidative stress in the hippocampus and prefrontal cortex of young and old rats submitted to polymicrobial sepsis induction. Male Wistar rats grouped into sham (60d), sham (210d), cecal ligation and perforation (CLP) (60d) and CLP (210d) with n = 16 per experimental group were evaluated using the CLP technique to induce sepsis. The brain regions were collected at 24 h after sepsis induction to determine BBB permeability, myeloperoxidase (MPO) activity as marker of neutrophil activation, nitrite/nitrate (N/N) levels as marker of reactive nitrogen species, thiobarbituric acid reactive substances as marker of lipid peroxidation, protein carbonylation as marker of protein oxidation, and activity of antioxidant enzyme catalase (CAT). There was an increase in the BBB permeability in the CLP groups, and this was enhanced with aging in both brain region. MPO activity in the brain regions increased in the CLP groups, along with a hippocampal increase in the CLP 210d group compared to the 60d group. The concentration of N/N in the brain region was increased in the CLP groups. The damage to lipids and proteins in the two structures was enhanced in the CLP groups, while only lipid peroxidation was higher in the prefrontal cortex of the CLP 210d group compared to the 60d. CAT activity in the hippocampus was decreased in both CLP groups, and this was also influenced by age, whereas in the prefrontal cortex there was only a decrease in CAT in the CLP 60d group compared to the sham 60d. These findings indicate that aging potentiated BBB permeability in sepsis, which possibly triggered an increase in neutrophil infiltration and, consequently, an increase in oxidative stress.


Assuntos
Barreira Hematoencefálica , Sepse , Animais , Modelos Animais de Doenças , Masculino , Estresse Oxidativo , Permeabilidade , Ratos , Ratos Wistar
15.
J Integr Med ; 18(1): 26-34, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31818694

RESUMO

BACKGROUND: Venous ulcer represents the most advanced stage of chronic venous insufficiency. It is an important public health problem and has a significant impact on patients' quality of life due to chronic pain, inability to work, need for hospitalization and frequent outpatient follow-up. OBJECTIVE: We investigated the treatment benefits of far-infrared ceramic (cFIR), in a 90-day study of lower limb venous ulcers and looked at ulcer healing scores, quality of life, serum bio-markers of oxidative stress and antioxidant defense enzymes. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS: This is a randomized double-blind placebo-controlled study conducted in the Vascular Surgery Service of a hospital located in the northwest region of the State of Rio Grande do Sul, Brazil. We included patients with lower limb venous ulcers who were randomized to use either a bioceramics wrap or a placebo wrap for 90 days. MAIN OUTCOME MEASURES: The following evaluations were conducted at baseline and after 15, 30, 60 and 90 days: ulcer healing score, quality of life, and serum markers of oxidative stress and antioxidant enzyme activity. RESULTS: Patients (n = 24) with lower limb venous ulcers were randomized into two treatment groups. cFIR decreased the ulcer size on day 30 (P = 0.042) and 90 (P = 0.034) and the total ulcer healing scale scores on day 30 (P = 0.049) and 90 (P = 0.02) of the treatment, when compared to baseline. Additionally, cFIR improved tissue type (epithelial tissue) on day 60 (P = 0.022) when compared to baseline evaluation. CONCLUSION: cFIR clinically improved ulcer healing in patients with lower limb venous ulcers. TRIAL REGISTRATION: RBR-8c7xzn on ReBEC.


Assuntos
Cerâmica , Bandagens Compressivas , Raios Infravermelhos/uso terapêutico , Úlcera Varicosa/terapia , Idoso , Idoso de 80 Anos ou mais , Brasil , Método Duplo-Cego , Feminino , Humanos , Extremidade Inferior/irrigação sanguínea , Masculino , Pessoa de Meia-Idade , Qualidade de Vida
16.
Mol Neurobiol ; 57(11): 4451-4466, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32743736

RESUMO

Sepsis causes organ dysfunction due to an infection, and it may impact the central nervous system. Neuroinflammation and oxidative stress are related to brain dysfunction after sepsis. Both processes affect microglia activation, neurotrophin production, and long-term cognition. Fish oil (FO) is an anti-inflammatory compound, and lipoic acid (LA) is a universal antioxidant substance. They exert neuroprotective roles when administered alone. We aimed at determining the effect of FO+LA combination on microglia activation and brain dysfunction after sepsis. Microglia cells from neonatal pups were co-treated with lipopolysaccharide (LPS) and FO or LA, alone or combined, for 24 h. Cytokine levels were measured. Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) and treated orally with FO, LA, or FO+LA. At 24 h after surgery, the hippocampus, prefrontal cortex, and total cortex were obtained and assayed for levels of cytokines, myeloperoxidase (MPO) activity, protein carbonyls, superoxide dismutase (SOD), and catalase (CAT) activity. At 10 days after surgery, brain-derived neurotrophic factor (BDNF) levels were determined and behavioral tests were performed. The combination diminished in vitro levels of pro-inflammatory cytokines. The combination reduced TNF-α in the cortex, IL-1ß in the prefrontal cortex, as well as MPO activity, and decreased protein carbonyls formation in all structures. The combination enhanced catalase activity in the prefrontal cortex and hippocampus, elevated BDNF levels in all structures, and prevented behavioral impairment. In summary, the combination was effective in preventing cognitive damage by reducing neuroinflammation and oxidative stress and increasing BDNF levels.


Assuntos
Encéfalo/patologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Óleos de Peixe/farmacologia , Inflamação/patologia , Estresse Oxidativo/efeitos dos fármacos , Sepse/complicações , Ácido Tióctico/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Catalase/metabolismo , Células Cultivadas , Citocinas/metabolismo , Feminino , Inflamação/complicações , Estimativa de Kaplan-Meier , Transtornos da Memória/complicações , Microglia/efeitos dos fármacos , Microglia/metabolismo , Teste de Campo Aberto , Peroxidase/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Ratos Wistar , Superóxido Dismutase/metabolismo
17.
Neurochem Int ; 135: 104712, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32126248

RESUMO

Evidences has suggested that in the early life the innate immune system presents plasticity and the time and dose-adequate stimuli in this phase may program long-lasting immunological responses that persist until adulthood. We aimed to evaluate whether LPS challenge in early childhood period may modulate brain alterations after sepsis in adult life. Experiments were performed to evaluate the LPS challenge in early childhood or adult period on acute and long-term brain alterations after model of sepsis by cecal ligation and perforation (CLP) in adult life. Wistar rats were divided in saline+sham, LPS+sham, saline+CLP and LPS+CLP groups to determine cytokine levels and nitrite/nitrate concentration in cerebrospinal fluid (CSF); oxidative damage, activity of antioxidant enzymes (superoxide dismutase-SOD and catalase-CAT); blood brain barrier (BBB) permeability; myeloperoxidase (MPO) and epigenetic enzymes activities in the hippocampus and prefrontal cortex (at 24 h after CLP) and cognitive function, survival and brain-derived neurotrophic factor (BDNF) level (at ten days after CLP). LPS-preconditioning in early life could lead to decreased levels of TNF-α and IL-6 and oxidative damage parameters in the brain after CLP in adult rats. In addition, LPS-preconditioning in early life increase CAT activity, attenuates the BBB permeability and epigenetic enzymes alterations and in long term, improves the memory, BDNF levels and survival. In conclusion, rats submitted to CLP in adulthood displayed acute neuroinflammation, neurochemical and epigenetic alteration improvement accompanied in long term by an increase in survival, neurotrophin level and memory performance when preconditioned with LPS in the early life.


Assuntos
Encéfalo/imunologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Neuroimunomodulação/imunologia , Neuroproteção/imunologia , Sepse/imunologia , Fatores Etários , Animais , Encéfalo/efeitos dos fármacos , Masculino , Neuroimunomodulação/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Ratos , Ratos Wistar , Sepse/induzido quimicamente
18.
J Drug Target ; 28(4): 428-436, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31594390

RESUMO

Herein, we report the effect of gold nanoparticles (AuNP) and n-acetylcysteine (NAC) isolated or in association as important anti-inflammatory and antioxidant compounds on brain dysfunction in septic rats. Male Wistar rats after sham operation or caecal ligation and perforation (CLP) were treated with subcutaneously injection of AuNP (50 mg/kg) and/or NAC (20 mg/kg) or saline immediately and 12 h after surgery. Twenty-four hours after CLP, hippocampus and prefrontal cortex were obtained and assayed for myeloperoxidase (MPO) activity, cytokines, lipid peroxidation, protein carbonyls formation, mitochondrial respiratory chain, and CK activity. AuNP + NAC association decreased MPO activity and pro-inflammatory cytokines production, being more effective than NAC or AuNP isolated treatment. AuNP + NAC association and NAC isolated treatment decreased oxidative stress to lipids in both brain structures, while protein oxidation decreased only in the hippocampus of AuNP + NAC association-treated animals. Complex I activity was increased with AuNP + NAC association and NAC isolated in the hippocampus. Regarding CK activity, AuNP and AuNP + NAC association increased this marker in both brain structures after CLP. Our data provide the first experimental demonstration that AuNP and NAC association was able to reduce sepsis-induced brain dysfunction in rats by decreasing neuroinflammation, oxidative stress parameters, mitochondrial dysfunction and CK activity.


Assuntos
Acetilcisteína/metabolismo , Ouro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Sepse/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Ratos , Ratos Wistar , Sepse/metabolismo
19.
Mol Neurobiol ; 57(12): 5247-5262, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32870491

RESUMO

Sepsis survivors present acute and long-term cognitive impairment and the pathophysiology of neurological dysfunction in sepsis involves microglial activation. Recently, the involvement of cytosolic receptors capable of forming protein complexes called inflammasomes have been demonstrated to perpetuate neuroinflammation. Thus, we investigated the involvement of the NLRP3 inflammasome activation on early and late brain changes in experimental sepsis. Two-month-old male Wistar rats were submitted to the sepsis model by cecal ligation and perforation (CLP group) or laparotomy only (sham group). Immediately after surgery, the animals received saline or NLRP3 inflammasome formation inhibitor (MCC950, 140 ng/kg) intracerebroventricularly. Prefrontal cortex and hippocampus were isolated for cytokine analysis, microglial and astrocyte activation, oxidative stress measurements, nitric oxide formation, and mitochondrial respiratory chain activity at 24 h after CLP. A subset of animals was followed for 10 days for survival assessment, and then behavioral tests were performed. The administration of MCC950 restored the elevation of IL-1ß, TNF-α, IL-6, and IL-10 cytokine levels in the hippocampus. NLRP3 receptor levels increased in the prefrontal cortex and hippocampus at 24 h after sepsis, associated with microglial, but not astrocyte, activation. MCC950 reduced oxidative damage to lipids and proteins as well as preserved the activity of the enzyme SOD in the hippocampus. Mitochondrial respiratory chain activity presented variations in both structures studied. MCC950 reduced microglial activation, decreased acute neurochemical and behavioral alteration, and increased survival after experimental sepsis.


Assuntos
Encéfalo/patologia , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sepse/complicações , Doença Aguda , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Catalase/metabolismo , Citocinas/metabolismo , Transporte de Elétrons , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Mediadores da Inflamação/metabolismo , Estimativa de Kaplan-Meier , Peroxidação de Lipídeos , Masculino , Memória , Transtornos da Memória/fisiopatologia , Microglia/metabolismo , Mitocôndrias/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Estresse Oxidativo , Córtex Pré-Frontal/metabolismo , Carbonilação Proteica , Ratos Wistar , Superóxido Dismutase/metabolismo , Análise de Sobrevida
20.
Nutrition ; 70: 110417, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30867119

RESUMO

OBJECTIVES: Sepsis is a severe organic dysfunction caused by an infection that affects the normal regulation of several organ systems, including the central nervous system. Inflammation and oxidative stress play crucial roles in the development of brain dysfunction in sepsis. The aim of this study was to determine the effect of a fish oil (FO)-55-enriched lipid emulsion as an important anti-inflammatory compound on brain dysfunction in septic rats. METHODS: Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) or sham (control) and treated orally with FO (600 µL/kg after CLP) or vehicle (saline; sal). Animals were divided into sham+sal, sham+FO, CLP+sal and CLP+FO groups. At 24 h and 10 d after surgery, the hippocampus, prefrontal cortex, and total cortex were obtained and assayed for levels of interleukin (IL)-1ß and IL-10, blood-brain barrier permeability, nitrite/nitrate concentration, myeloperoxidase activity, thiobarbituric acid reactive species formation, protein carbonyls, superoxide dismutase and catalase activity, and brain-derived neurotrophic factor levels. Behavioral tasks were performed 10 d after surgery. RESULTS: FO reduced BBB permeability in the prefrontal cortex and total cortex of septic rats, decreased IL-1ß levels and protein carbonylation in all brain structures, and diminished myeloperoxidase activity in the hippocampus and prefrontal cortex. FO enhanced brain-derived neurotrophic factor levels in the hippocampus and prefrontal cortex and prevented cognitive impairment. CONCLUSIONS: FO diminishes the negative effect of polymicrobial sepsis in the rat brain by reducing inflammatory and oxidative stress markers.


Assuntos
Anti-Inflamatórios/farmacologia , Disfunção Cognitiva/prevenção & controle , Óleos de Peixe/farmacocinética , Estresse Oxidativo/efeitos dos fármacos , Sepse/psicologia , Animais , Biomarcadores/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Doenças do Ceco/complicações , Doenças do Ceco/microbiologia , Ceco/irrigação sanguínea , Ceco/microbiologia , Disfunção Cognitiva/microbiologia , Modelos Animais de Doenças , Emulsões , Lobo Frontal/efeitos dos fármacos , Interleucina-1beta/metabolismo , Perfuração Intestinal/complicações , Perfuração Intestinal/microbiologia , Ligadura/efeitos adversos , Masculino , Permeabilidade , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , Sepse/etiologia , Sepse/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA