Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Synchrotron Radiat ; 31(Pt 1): 162-176, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37933848

RESUMO

The SIRIUS beamline of Synchrotron SOLEIL is dedicated to X-ray scattering and spectroscopy of surfaces and interfaces, covering the tender to mid-hard X-ray range (1.1-13 keV). The beamline has hosted a wide range of experiments in the field of soft interfaces and beyond, providing various grazing-incidence techniques such as diffraction and wide-angle scattering (GIXD/GIWAXS), small-angle scattering (GISAXS) and X-ray fluorescence in total reflection (TXRF). SIRIUS also offers specific sample environments tailored for in situ complementary experiments on solid and liquid surfaces. Recently, the beamline has added compound refractive lenses associated with a transfocator, allowing for the X-ray beam to be focused down to 10 µm × 10 µm while maintaining a reasonable flux on the sample. This new feature opens up new possibilities for faster GIXD measurements at the liquid-air interface and for measurements on samples with narrow geometries.

2.
Langmuir ; 40(1): 84-90, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38128069

RESUMO

Many ionic surfactants, such as sodium dodecyl sulfate (SDS) crystallize out of solution if the temperature falls below the crystallization boundary. The crystallization temperature is impacted by solution properties and can be decreased with the addition of salt. We studied SDS crystallization at liquid/vapor interfaces from solutions at high ionic strength (sodium chloride). We show that the surfactant crystals at the surface grow from adsorbed SDS molecules, as evidenced by the preferential orientation of the crystals identified by using grazing incidence X-ray diffraction. We find a unique time scale for the crystal growth from the evolution of structure, surface tension, and visual inspection, which can be controlled through varying the SDS or NaCl concentrations.

3.
Langmuir ; 38(8): 2538-2549, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171621

RESUMO

This work reports the feasibility of polybutadiene (PB) cross-linking under UV irradiation in the presence of a linear polymer, cellulose acetate (CA), to form semi-interpenetrating polymer networks at the air-water interface. The thermodynamic properties and the morphology of two-dimensional (2D) CA/PB blends are investigated after UV irradiation and for a wide range of CA volume fractions. A contraction of the mixed Langmuir films is observed independent of the composition, in agreement with that recorded for the individual PB monolayer after cross-linking. The PB network formation is demonstrated by in situ sum-frequency generation spectroscopy on the equivolumic CA/PB mixed film. From Brewster angle microscopy observations, the PB network synthesis does not induce any morphology change at the mesoscopic scale, and all of the mixed films remain homogeneous laterally. In situ neutron reflectometry is used to probe the effect of PB cross-linking on the vertical structure of CA/PB mixed films. For all studied compositions, significant thickening of the films is evidenced, consistent with their contraction ratio. This thickening is accompanied by a partial expulsion of the PB toward the film-air interface, which is attributed to the hydrophobic character of the PB. This phenomenon is stronger for films rich in PB. In particular, the structure of the PB-rich film undergoes a transition from vertically homogeneous to inhomogeneous along the depth. 2D semi-interpenetrating polymer networks can thus be synthesized at the air-water interface with a morphology that is strongly influenced by the polymer-polymer and polymer-environment interactions.

4.
Soft Matter ; 18(25): 4792-4802, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35708225

RESUMO

New collective optical properties have emerged recently from organized and oriented arrays of closely packed semiconducting and metallic nanoparticles (NPs). However, it is still challenging to obtain NP assemblies which are similar everywhere on a given sample and, most importantly, share a unique common orientation that would guarantee a unique behavior everywhere on the sample. In this context, by combining optical microscopy, fluorescence microscopy and synchrotron-based grazing incidence X-ray scattering (GISAXS) of assemblies of gold nanospheres and of fluorescent nanorods, we study the interactions between NPs and liquid crystal smectic topological defects that can ultimately lead to unique NP orientations. We demonstrate that arrays of one-dimensional - 1D (dislocations) and two-dimensional - 2D (grain boundaries) topological defects oriented along one single direction confine and organize NPs in closely packed networks but also orient both single nanorods and NP networks along the same direction. Through the comparison between smectic films associated with different kinds of topological defects, we highlight that the coupling between the NP ligands and the smectic layers below the grain boundaries may be necessary to allow for fixed NP orientation. This is in contrast with 1D defects, where the induced orientation of the NPs is intrinsically induced by the confinement independently of the ligand nature. We thus succeeded in achieving the fixed polarization of assemblies of single photon emitters in defects. For gold nanospheres confined in grain boundaries, a strict orientation of hexagonal networks has been obtained with the 〈10〉 direction strictly parallel to the defects. With such closely packed and oriented NPs, new collective properties are now foreseen.

5.
Proc Natl Acad Sci U S A ; 116(30): 14868-14873, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31278150

RESUMO

Fully atomistic molecular-dynamics (MD) simulations of perfluoroalkylalkane molecules at the surface of water show the spontaneous formation of aggregates whose size and topography closely resemble the experimentally observed hemimicelles for this system. Furthermore, the grazing incidence X-ray diffraction (GIXD) pattern calculated from the simulation trajectories reproduces the experimental GIXD spectra previously obtained, fully validating the MD simulation results. The detailed analysis of the internal structure of the aggregates obtained by the MD simulations supports a definite rational explanation for the spontaneous formation, stability, size, and shape of perfluoroalkylalkane hemimicelles at the surface of water.

6.
Langmuir ; 37(18): 5717-5730, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33905653

RESUMO

Binary blends of water-insoluble polymers are a versatile strategy to obtain nanostructured films at the air-water interface. However, there are few reported structural studies of such systems in the literature. Depending on the compatibility of the polymers and the role of the air-water interface, one can expect various morphologies. In that context, we probed Langmuir monolayers of cellulose acetate (CA), of deuterated and postoxidized polybutadiene (PBd) and three mixtures of CA/PBd at various concentrations by coupling surface pressure-area isotherms, Brewster angle microscopy (BAM), and neutron reflectometry at the air-water interface to determine their thermodynamic and structural properties. The homogeneity of the films in the vertical direction, averaged laterally over the spatial coherence length of the neutron beam (∼5 µm), was assessed by neutron reflectometry measurements using D2O/H2O subphases contrast-matched to the mixed films. At 5 mN/m, the whole mixed films can be described by a single slightly hydrated thin layer. However, at 15 mN/m, the fit of the reflectivity curves requires a two-layer model consisting of a CA/PBd blend layer in contact with the water, interdiffused with a PBd layer at the interface with air. At intermediate surface pressure (10 mN/m), the determined structure was between those obtained at 5 and 15 mN/m depending on film composition. This PBd enrichment at the air-film interface at high surface pressure, which leads to the PBd depletion in the blend monolayer at the water surface, is attributed to the hydrophobic character of this polymer compared with the predominantly hydrophilic CA.

7.
Langmuir ; 37(30): 9034-9042, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34297576

RESUMO

The phase diagram of the Langmuir film of diacetylene alcohol-henicosa-5,7-diyn-1-ol-is investigated by means of surface pressure versus surface area isotherms, Brewster angle microscopy, X-ray reflectivity, and grazing incident X-ray diffraction. Among the usual phases described in the generic phase diagram of small head group molecules, one observes an unexpected reversible transition from an ordered condensed phase to a disordered one upon increasing the surface pressure. We postulate that the origin of this unusual, unprecedented transition results from the competition between the interactions between the diacetylene blocks in the hydrophobic chain and the hydrogen bonds between head groups and water.

8.
Nano Lett ; 20(3): 1598-1606, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31951415

RESUMO

In this Letter, we show how advanced hierarchical structures of topological defects in the so-called smectic oily streaks can be used to sequentially transfer their geometrical features to gold nanospheres. We use two kinds of topological defects, 1D dislocations and 2D ribbon-like topological defects. The large trapping efficiency of the smectic dislocation cores not only surpasses that of the elastically distorted zones around the cores but also surpasses the one of the 2D ribbon-like topological defect. This enables the formation of a large number of aligned NP chains within the dislocation cores that can be quasi-fully filled without any significant aggregation outside of the cores. When the NP concentration is large enough to entirely fill the dislocation cores, the LC confinement varies from 1D to 2D. We demonstrate that the 2D topological defect cores induce a confinement that leads to planar hexagonal networks of NPs. We then draw the phase diagram driven by NP concentration, associated with the sequential confinements induced by these two kinds of topological defects. Owing to the excellent large-scale order of these defect cores, not only the NP chains but also the NP hexagonal networks can be oriented along the desired direction, suggesting a possible new route for the creation of either 1D or 2D highly anisotropic NP networks. In addition, these results open rich perspectives based on the possible creation of coexisting NP assemblies of different kinds, localized in different confining areas of a same smectic film that would thus interact thanks to their proximity but also would interact via the surrounding soft matter matrix.

9.
Langmuir ; 36(22): 6132-6144, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32393027

RESUMO

We show by X-ray and neutron small-angle scattering that gold nanoparticles with controlled sizes and morphologies can be obtained by the metallic reduction of AuCl4- ions trapped in 3D organic molds by X-ray radiolysis. The molds are spherical frozen micelles of polystyrene-b-poly(dimethylaminoethyl methacrylate) (PS-b-PDMAEMA) block copolymer in acidic aqueous solution with a PS spherical core surrounded by a corona of PDMAEMA chains in good solvent. The behavior of micelles is controlled by the [AuCl4-]/[DMAEMA] ratio RAuCl4-/DMAEMA. At low gold concentration, AuCl4- ions condense on the positively charged DMAEMA moieties without changing the behavior of the PDMAEMA chains. At intermediate gold concentration, the ions induce a progressive contraction of the corona's chains and dehydration of micelles. At large gold concentration, the corona becomes a fully dry phase loaded with gold ions, which induces micelle aggregation. Radiolysis of the solution by an intense X-ray beam produces different types of gold nanoparticles with respect to RAuCl4-/DMAEMA and irradiation time. At RAuCl4-/DMAEMA = 0.033, irradiation produces in the first step gold clusters in the micelle corona which in the second step merge to form nanoparticles of a similar size to that of the micelle. Conversely, at RAuCl4-/DMAEMA = 0.33, micelles do not operate as templates but only as nucleation zones and large nanoparticles grow outside the micelles.

10.
Molecules ; 24(19)2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31590402

RESUMO

Due to the characteristic chain rigidity and weak intermolecular interactions of perfluorinated substances, the phase diagram of Langmuir monolayer formed by perfluorinated molecules has been interpreted so far as displaying only two phases, a 2D gas (G) and a liquid condensed (LC). However, in this work, we presented Grazing Incidence X-ray Diffraction measurements, which exhibit two diffraction peaks on the transition plateau: One is the signature of the hexagonal structure of the LC phase, the second one is associated to the low-density fluid phase and is thus more ordered than expected for a 2D gas or a typical fluid phase. Atomistic molecular dynamics simulations, performed on the transition plateau, revealed the existence of clusters in which domains of vertical molecules organized in a hexagonal lattice coexist with domains of parallel lines formed by tilted molecules, a new structure that could be described as a "2D smectic C" phase. Moreover, the diffraction spectrum calculated from the simulation trajectories compared favorably with the experimental spectra, fully validating the simulations and the proposed interpretation. The results were also in agreement with the thermodynamic analysis of the fluid phase and X-ray Reflectivity experiments performed before and after the transition between these two phases.


Assuntos
Ácidos Graxos/química , Tensoativos/química , Adsorção , Halogenação , Simulação de Dinâmica Molecular , Transição de Fase , Termodinâmica , Difração de Raios X
11.
Phys Chem Chem Phys ; 20(9): 6629-6637, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29457172

RESUMO

We studied by means of Grazing Incidence X-ray Diffraction (GIXD) coupled with X-ray fluorescence spectroscopy the structure of a behenic acid monolayer spread at the surface of Mg2+/Mn2+ mixed aqueous solutions. For the pure Mg2+ and Mn2+ aqueous solutions, the cations induce at the surface different 2D lattice superstructures of the organic monolayer. These superstructures correspond to an inorganic organized monolayer anchored to the hydrophilic group of the ordered behenic acid monolayer. Among the various diffraction peaks, we focused on those characteristics of the behenic acid oblique cell. As the Mg2+ mole fraction x increases in the Mg2+/Mn2+ mixed subphase, a continuous evolution of the oblique cell parameters is observed indicating the insertion of Mg2+ cations in the Mn2+ ordered monolayer. Then, a further increase leads to the appearance of a coexistence between two oblique surface phases. The cell parameters of both phases evolve continuously along the x range of the transition until a single Mg-rich ordered phase is detected. However, although the intensities of the peaks in the coexistence region are in agreement with a first-order phase transition, the cell parameters evolve simultaneously. Considering a thermodynamics analysis, this evidences that, apart from the concentration, another unidentified intensive parameter is varying. We suggest that it is the ionic strength, which appears to be strongly related to the concentrations.

12.
Langmuir ; 33(43): 12525-12534, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28972777

RESUMO

We describe the surface behavior of PS-b-PAA monolayers at the air/water interface using N,N-dimethyformamide (DMF) as spreading solvent. At low pH, when the PAA blocks are neutral, the surface pressure versus molecular area isotherm shows a pseudoplateau associated with the presence of remaining spreading solvent molecules in the monolayer, as we described in a former study (Guennouni et al., Langmuir, 2016). We show here that the width of the plateau decreases when increasing pH up to its complete disappearance at high pH, when PAA blocks are fully charged, although two regimes of compressibilities on the isotherm still exist. A refined structural study at pH 9 combining specular neutron reflectivity (SNR), grazing-incidence small-angle X-ray scattering (GISAXS), and atomic force microscopy (AFM) in liquid measurements shows that (i) PAA blocks are stretched in solution, as expected from polyelectrolyte brushes in the osmotic regime; (ii) the system undergoes a spinodal decomposition during deposit at the air/water interface in the presence of DMF. Upon compression, the Qxy* position of the peak associated with the spinodal structure remains almost constant but its intensity evolves strongly and passes through a maximum at intermediate pressures. This reveals two operating processes in the system: strong electrostatic repulsions between chains that prevent in-plane reorganizations and force such reorganizations to occur from the surface to the volume and progressive expulsion of the DMF molecules from the monolayer. These processes have antagonist effects on the intensity of the peak: the increase of the repulsions makes it more pronounced, whereas the expulsion of solvent makes it vanish due to the loss of contrast.

13.
Langmuir ; 32(8): 1971-80, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26824719

RESUMO

We present an in situ structural study of the surface behavior of PS-b-PAA monolayers at the air/water interface at pH 2, for which the PAA blocks are neutral and using N,N-dimethyformamide (DMF) as spreading solvent. The surface pressure versus molecular area isotherm shows a perfectly reversible pseudoplateau over several cycles of compression/decompression. The width of such plateau enlarges when increasing temperature, conversely to what is classically observed in the case of an in-plane first order transition. We combined specular neutron reflectivity (SNR) experiments with contrast variation to solve the profile of each block perpendicular to the surface with grazing-incidence small-angle scattering (GISAXS) measurements to determine the in-plane structure of the layer. SNR experiments showed that both PS and PAA blocks remain adsorbed on the surface for all surface pressure probed. A correlation peak at Q(xy)* = 0.021 Å(-1) is evidenced by GISAXS at very low surface pressure which intensity first increases on the plateau. When compressing further, its intensity decays while Q(xy)* is shifted toward low Q(xy). The peak fully disappears at the end of the plateau. These results are interpreted by the formation of surface aggregates induced by DMF molecules at the surface. These DMF molecules remain adsorbed within the PS core of the aggregates. Upon compression, they are progressively expelled from the monolayer, which gives rise to the pseudoplateau on the isotherm. The intensity of the GISAXS correlation peak is set by the amount of DMF within the monolayer as it vanishes when all DMF molecules are expelled. This result emphizes the role of the solvent in Langmuir monolayer formed by amphiphilic copolymers which hydrophobic and hydrophilic parts are composed by long polymer chains.

14.
Soft Matter ; 12(3): 678-88, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26565648

RESUMO

Combining optical microscopy, synchrotron X-ray diffraction and ellipsometry, we studied the internal structure of linear defect domains (oily streaks) in films of a smectic liquid crystal 8CB with thicknesses in the range of 100-300 nm. These films are confined between air and a rubbed PVA polymer substrate which imposes hybrid anchoring conditions (normal and unidirectional planar, respectively). We show how the presence or absence of dislocations controls the structure of highly deformed thin smectic films. Each domain contains smectic layers curved in the shape of flattened hemicylinders to satisfy both anchoring conditions, together with grain boundaries whose size and shape are controlled by the presence of dislocation lines. A flat grain boundary normal to the interface connects neighboring hemicylinders, while a rotating grain boundary (RGB) is located near the axis of curvature of the cylinders. The RGB shape appears such that dislocation lines are concentrated at its summit close to the air interface. The smectic layers reach the polymer substrate via a transition region where the smectic layer orientation satisfies the planar anchoring conditions over the entire polymer substrate and whose thickness does not depend on that of the film. The strength of planar anchoring appears to be high, larger than 10(-2) mJ m(-2), compensating for the high energy cost of creating an additional 2D defect between a horizontal smectic layer and perpendicular ones of the transition region. This 2D defect may be melted, in order to avoid the creation of a transition region structure composed of a large number of dislocations. As a result, linear defect domains can be considered as arrays of oriented defects, straight dislocations of various Burger vectors, whose location is now known, and 2D nematic defects. The possibility of easy variation between the present structure with a moderate amount of dislocations and a structure with a large number of dislocations is also demonstrated.


Assuntos
Compostos de Bifenilo/química , Cristais Líquidos/química , Cristais Líquidos/ultraestrutura , Nitrilas/química , Simulação por Computador , Modelos Químicos , Transição de Fase , Álcool de Polivinil/química , Difração de Raios X
15.
Chemistry ; 21(22): 8271-80, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25900250

RESUMO

Four hybrid polyoxometalate-porphyrin copolymer films were obtained by the electrooxidation of zinc octaethylporphyrin in the presence of four different Dawson-type polyoxometalates bearing two pyridyl groups (POM(py)2) with various spacers. The POM monomers were designed around 1,3,5-trisubstituted benzene rings. Two of the substituents of the benzene ring are linked to the pyridyl groups, and the third is connected to the POM subunit. The four monomers vary in the relative positions of the nitrogen atoms of the pyridine rings or in the distance from the carbonyl group. The monomers were fully characterized by (1)H, (31)P, and (13)C NMR spectroscopy, electrospray mass spectrometry, IR and UV/Vis spectroscopy, and electrochemistry. The copolymers were characterized by UV/Vis spectroscopy, X-ray photoelectron spectroscopy, electrochemistry, and AFM. Their photovoltaic performance under visible light irradiation was investigated by photocurrent transient measurements under visible illumination.


Assuntos
Metaloporfirinas/química , Polímeros/química , Porfirinas/química , Compostos de Tungstênio/química , Eletricidade , Técnicas Eletroquímicas , Luz , Espectroscopia de Ressonância Magnética , Metaloporfirinas/síntese química , Modelos Moleculares , Espectroscopia Fotoeletrônica , Porfirinas/síntese química , Espectrofotometria Ultravioleta , Compostos de Tungstênio/síntese química
16.
Langmuir ; 31(23): 6395-403, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26017847

RESUMO

The mixing behavior of deuterated polydimethylsiloxane (PDMSd) and cellulose acetate butyrate (CAB) spread as Langmuir films at the air-water interface was studied by means of surface pressure-area isotherms, Brewster angle microscopy (BAM) observations, and in situ neutron reflectivity. The contrast variation method was used with different D2O/H2O mixtures as subphase, allowing contrast matching to either CAB, PDMSd, or PDMSd/CAB mixed film if homogeneous. At PDMSd volume fractions Φ lower than 0.6, the mixed film is a homogeneous monolayer throughout the film compression, in agreement with the monophasic film observed by BAM and the attractive interactions between PDMSd and CAB evidenced from the isotherm measurements. In contrast, at PDMSd volume fractions Φ higher than 0.6, a vertically segregated structure of the mixed film is highlighted. Indeed, whatever the surface pressure, a bilayer structure is observed with a PDMSd layer in contact with the air over a thin CAB layer in contact with the subphase. These results show that the structure of the film is mainly driven by the PDMSd volume fraction which allows obtaining either a homogeneous membrane which composition can be tuned or a vertically segregated system. In contrast, only the thickness of the layers varies with the surface pressure while the structure of the film is not affected.


Assuntos
Ar/análise , Celulose/análogos & derivados , Dimetilpolisiloxanos/química , Nêutrons , Água/química , Celulose/química , Deutério/química , Estrutura Molecular , Propriedades de Superfície
17.
Langmuir ; 30(50): 15193-9, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25425120

RESUMO

Multilayer films of semifluorinated alkanes (SFAs) at the air/water interface were studied in situ by grazing incidence small-angle X-ray scattering (GISAXS). The results provide evidence that the first layer in contact with the water subphase, buried below the overlayers, exhibits the same supramolecular hexagonal structure that is observed in the monolayer before the collapse, at non-zero surface pressure. We believe this result clearly demonstrates the major role of the interactions between the first layer of SFAs and the water subphase to the formation of the structure.

18.
Langmuir ; 29(35): 11046-54, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23927021

RESUMO

The structure of trilayer Langmuir-Blodgett (LB) films on oxidized silicon wafers has been investigated using grazing incidence X-ray diffraction at various incidence angles and atomic force microscopy (AFM). These films are formed by two behenic acid (BA) layers and a third monolayer of amphiphilic molecules having different architectures. These molecules have the same polar head and differ from each other by the chain, either saturated or unsaturated hydrogenated or semi-fluorinated. The structure of the first BA monolayer appears as unchanged in all cases, whereas a condensation of the second BA monolayer is evidenced when the third layer is not formed with the saturated hydrogenated chain. We interpret this condensation as resulting from the mismatch between the lattices of the second BA layer and the external monolayer, possibly associated with the formation of a new monolayer-air interface creating line tension effects. Line tension estimation has also been made from the size of the holes observed in the different LB films.

19.
Artigo em Inglês | MEDLINE | ID: mdl-35657142

RESUMO

The formation of ultrathin films of Rh-based porous metal-organic polyhedra (Rh-MOPs) by the Langmuir-Blodgett method has been explored. Homogeneous and dense monolayer films were formed at the air-water interface either using two different coordinatively alkyl-functionalized Rh-MOPs (HRhMOP(diz)12 and HRhMOP(oiz)12) or by in situ incorporation of aliphatic chains to the axial sites of dirhodium paddlewheels of another Rh-MOP (OHRhMOP) at the air-liquid interface. All these Rh-MOP monolayers were successively deposited onto different substrates in order to obtain multilayer films with controllable thicknesses. Aliphatic chains were partially removed from HRhMOP(diz)12 films post-synthetically by a simple acid treatment, resulting in a relevant modification of the film hydrophobicity. Moreover, the CO2/N2 separation performance of Rh-MOP-supported membranes was also evaluated, proving that they can be used as selective layers for efficient CO2 separation.

20.
Langmuir ; 27(1): 132-43, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21126045

RESUMO

Films based on electrostatic interactions between tetracationic zinc porphyrins, ZnOEP(py)(4)(4+) or ZnTMePyP(4+), and the tetracobalt Dawson-derived sandwich polyanion αßßα-[Co(4)(H(2)O)(2)(P(2)W(15)O(56))(2)](16-) are formed by the so-called layer-by-layer method. These films have been characterized by UV-visible absorption spectroscopy, atomic force microscopy and electrochemistry. The composition of the film was measured by X-ray photoelectron spectrum (XPS). The XPS data confirm the presence of the expected elements. The photocatalytic properties of these films have been also studied for the reduction of silver and gold ions. Indeed, in these systems, porphyrins can be excited by visible light and then play the role of photosensitizers able to give electrons to POM known to be good catalysts. Silver nanowires and gold nanosheets have been obtained.


Assuntos
Cobalto/química , Metais/química , Nanocompostos/química , Compostos Organometálicos/química , Processos Fotoquímicos , Porfirinas/química , Catálise , Eletroquímica , Ouro/química , Microscopia de Força Atômica , Modelos Moleculares , Conformação Molecular , Nanofios/química , Permeabilidade , Propanóis/química , Quartzo/química , Prata/química , Cloreto de Sódio/química , Análise Espectral , Eletricidade Estática , Compostos de Tungstênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA