Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Protein Sci ; 33(2): e4872, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114424

RESUMO

To survive extreme drying (anhydrobiosis), many organisms, spanning every kingdom of life, accumulate intrinsically disordered proteins (IDPs). For decades, the ability of anhydrobiosis-related IDPs to form transient amphipathic helices has been suggested to be important for promoting desiccation tolerance. However, evidence empirically supporting the necessity and/or sufficiency of helicity in mediating anhydrobiosis is lacking. Here, we demonstrate that the linker region of CAHS D, a desiccation-related IDP from the tardigrade Hypsibius exemplaris, that contains significant helical structure, is the protective portion of this protein. Perturbing the sequence composition and grammar of the linker region of CAHS D, through the insertion of helix-breaking prolines, modulating the identity of charged residues, or replacement of hydrophobic amino acids with serine or glycine residues results in variants with different degrees of helical structure. Importantly, correlation of protective capacity and helical content in variants generated through different helix perturbing modalities does not show as strong a trend, suggesting that while helicity is important, it is not the only property that makes a protein protective during desiccation. These results provide direct evidence for the decades-old theory that helicity of desiccation-related IDPs is linked to their anhydrobiotic capacity.


Assuntos
Proteínas Intrinsicamente Desordenadas , Tardígrados , Animais , Tardígrados/metabolismo , Dessecação , Proteínas Intrinsicamente Desordenadas/química , Prolina/metabolismo
2.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464187

RESUMO

The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins combined with the exposure of their residues accounts for this sensitivity. One context in which IDPs play important roles that is concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family, synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results demonstrate that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet, the mechanisms underlying this synergy differ between IDP families.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA