Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Med Genet ; 61(8): 727-733, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38834294

RESUMO

OBJECTIVE: This document addresses the clinical application of next-generation sequencing (NGS) technologies for prenatal genetic diagnosis and aims to establish clinical practice recommendations in Spain to ensure uniformity in implementing these technologies into prenatal care. METHODS: A joint committee of expert obstetricians and geneticists was created to review the existing literature on fetal NGS for genetic diagnosis and to make recommendations for Spanish healthcare professionals. RESULTS: This guideline summarises technical aspects of NGS technologies, clinical indications in prenatal setting, considerations regarding findings to be reported, genetic counselling considerations as well as data storage and protection policies. CONCLUSIONS: This document provides updated recommendations for the use of NGS diagnostic tests in prenatal diagnosis. These recommendations should be periodically reviewed as our knowledge of the clinical utility of NGS technologies, applied during pregnancy, may advance.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Diagnóstico Pré-Natal , Humanos , Diagnóstico Pré-Natal/métodos , Diagnóstico Pré-Natal/normas , Gravidez , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Feminino , Espanha , Testes Genéticos/métodos , Testes Genéticos/normas , Aconselhamento Genético/métodos , Aconselhamento Genético/normas , Obstetrícia/normas , Obstetrícia/métodos , Ginecologia/normas
2.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000346

RESUMO

Autosomal dominant optic atrophy (ADOA) is a rare progressive disease mainly caused by mutations in OPA1, a nuclear gene encoding for a mitochondrial protein that plays an essential role in mitochondrial dynamics, cell survival, oxidative phosphorylation, and mtDNA maintenance. ADOA is characterized by the degeneration of retinal ganglion cells (RGCs). This causes visual loss, which can lead to legal blindness in many cases. Nowadays, there is no effective treatment for ADOA. In this article, we have established an isogenic human RGC model for ADOA using iPSC technology and the genome editing tool CRISPR/Cas9 from a previously generated iPSC line of an ADOA plus patient harboring the pathogenic variant NM_015560.3: c.1861C>T (p.Gln621Ter) in heterozygosis in OPA1. To this end, a protocol based on supplementing the iPSC culture media with several small molecules and defined factors trying to mimic embryonic development has been employed. Subsequently, the created model was validated, confirming the presence of a defect of intergenomic communication, impaired mitochondrial respiration, and an increase in apoptosis and ROS generation. Finally, we propose the analysis of OPA1 expression by qPCR as an easy read-out method to carry out future drug screening studies using the created RGC model. In summary, this model provides a useful platform for further investigation of the underlying pathophysiological mechanisms of ADOA plus and for testing compounds with potential pharmacological action.


Assuntos
GTP Fosfo-Hidrolases , Células-Tronco Pluripotentes Induzidas , Atrofia Óptica Autossômica Dominante , Células Ganglionares da Retina , Humanos , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia , Atrofia Óptica Autossômica Dominante/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Sistemas CRISPR-Cas , Edição de Genes/métodos , Mutação , Apoptose/genética , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38224868

RESUMO

INTRODUCTION: Congenital/early-onset sensorineural hearing loss (SNHL) is one of the most common hereditary disorders in our environment. There is increasing awareness of the importance of an etiologic diagnosis, and genetic testing with next-generation sequencing (NGS) has the highest diagnostic yield. Our study shows the genetic results obtained in a cohort of patients with bilateral congenital/early-onset SNHL. MATERIALS AND METHODS: We included 105 children with bilateral SNHL that received genetic testing between 2019 and 2022. Genetic tests were performed with whole exome sequencing, analyzing genes related to hearing loss (virtual panel with 244 genes). RESULTS: 48% (50/105) of patients were genetically diagnosed. We identified pathogenic and likely pathogenic variants in 26 different genes, and the most frequently mutated genes were GJB2, USH2A and STRC. 52% (26/50) of variants identified produced non-syndromic hearing loss, 40% (20/50) produced syndromic hearing loss, and the resting 8% (4/50) could produce both non-syndromic and syndromic hearing loss. CONCLUSIONS: Genetic testing plays a vital role in the etiologic diagnosis of bilateral SNHL. Our cohort shows that genetic testing with NGS has a high diagnostic yield and can provide useful information for the clinical workup of patients.


Assuntos
Testes Genéticos , Síndromes de Usher , Criança , Humanos , Síndromes de Usher/complicações , Perda Auditiva Bilateral/etiologia , Sequenciamento de Nucleotídeos em Larga Escala , Peptídeos e Proteínas de Sinalização Intercelular
4.
Artigo em Inglês | MEDLINE | ID: mdl-38346493

RESUMO

INTRODUCTION: The contribution of genetic causes to sensorineural hearing loss (SNHL) in adults is less clear than in children, and genetic diagnosis is still not standardized in adults. In this study we present the genetic results obtained in a cohort of adult patients with SNHL. MATERIALS AND METHODS: We included 63 adults with SNHL that received genetic testing between 2019 and 2022. Whole exome sequencing was performed and variants in genes related to hearing loss (virtual panel with 244 genes) were prioritised and analysed. RESULTS: 24% (15/63) of patients were genetically diagnosed: 87% (13/15) of patients had non-syndromic hearing loss and 13% (2/15) had syndromic hearing loss. We identified pathogenic and likely pathogenic variants in 11 different genes. CONCLUSIONS: Our results show that a significant proportion of adults with SNHL have a genetic origin, and that implementation of genetic testing improves diagnostic accuracy and allows personalized management of these patients.


Assuntos
Sequenciamento do Exoma , Testes Genéticos , Perda Auditiva Neurossensorial , Humanos , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/diagnóstico , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA